
Co-Inflow: Coarse-grained Information Flow
Control for Java-like Languages

Jian Xiang, Stephen Chong
Harvard University, {jxiang, chong}@seas.harvard.edu

Abstract—Coarse-grained dynamic information-flow control
(IFC) is a good match for imperative object-oriented program-
ming languages such as Java. Java language abstractions align
well with coarse-grained IFC concepts, and so Java can be cleanly
extended with coarse-grained dynamic IFC without requiring
significantly different design patterns or excessive security anno-
tations, and without excessive performance overhead.

We present Co-Inflow: an extension of Java with coarse-grained
dynamic IFC. By careful design choices and defaults, a pro-
grammer typically needs to add very few annotations to a Java
program to convert it to a Co-Inflow program with relatively
good precision. Additional annotations can improve precision. We
achieve this tradeoff between precision and annotation burden
by instantiating and specializing recent advances in coarse-
grained IFC for a Java-like setting, and by using opaque labeled
values: a restriction of labeled values that the Co-Inflow runtime
automatically and securely creates and uses.

We have captured the essence of Co-Inflow in a middle-weight
imperative calculus, and proven that it provides a termination-
insensitive non-interference security guarantee. We have a pro-
totype implementation of Co-Inflow and use it to evaluate the
precision, usability, and potential performance of Co-Inflow.

I. INTRODUCTION

The correctness and security of applications often rely on
correctly enforcing appropriate restrictions on sensitive in-
formation. Increasingly sophisticated and mature language
techniques are becoming available to track and control the
use of sensitive information in applications (e.g., [1]–[12]).
However, these information-flow control (IFC) techniques
are often burdensome and invasive, requiring an application
programmer to provide many security annotations or to adapt
the program design to conform to the enforcement mechanism.

Coarse-grained dynamic information-flow control is a promis-
ing approach to track and control sensitive information in an
application. It tracks information at the granularity of a com-
putational container, for example, a lexically or dynamically
scoped section of code. Compared to fine-grained IFC—which
tracks information at the granularity of program variables—
coarse-grained IFC typically has lower annotation burden and
the potential for more efficient dynamic enforcement (since
fewer entities are tracked) [6].

Moreover, in a language-based setting where the granularity of
computational containers can be adjusted, coarse-grained IFC

can be made as precise as fine-grained IFC [13], [14], meaning
that we can obtain many of the benefits of coarse-grained IFC
without sacrificing precision.

We argue that coarse-grained dynamic IFC is a good match
for an imperative object-oriented programming language such
as Java. Existing Java language abstractions align well with
coarse-grained IFC concepts: method calls are natural com-
putational containers; objects are natural data containers. As
such, Java can be cleanly extended with coarse-grained dy-
namic IFC without requiring significantly different design pat-
terns or excessive security annotations, and without excessive
performance overhead.

To develop and explore this argument, we propose the Co-
Inflow language: an extension of Java with coarse-grained dy-
namic IFC. Method calls are computational containers, which
means that the programmer does not typically need to add
annotations to indicate computational containers. Programmers
can annotate additional computational containers, enabling
finer-grain tracking of information if needed for precision.

Labeled values—which encapsulate a value and a security
label that protects the information associated with the value—
are crucial for the expressiveness and usefulness of coarse-
grained dynamic IFC [3], [6], [15], [16]. Central to the
usability of Co-Inflow, we use opaque labeled values: labeled
values that the Co-Inflow system automatically constructs and
destructs without programmer annotation. We have judiciously
chosen when opaque labeled values are constructed to ensure
that information-flow tracking in Co-Inflow is precise without
programmer burden. Co-Inflow programmers can also use
normal labeled values in their programs; opaque labeled values
are used to get reasonable precision without burdening the
programmer. To ensure security, programmers cannot exam-
ine opaque labeled values: their computations access opaque
labeled values just like other values.

The key contribution of this paper is the design, implemen-
tation, and validation of coarse-grained dynamic information-
flow control for a Java-like language such that we align the
information-flow control mechanisms with existing language
abstractions to achieve a good trade-off between programmer
burden, precision, and performance.

In Section II we introduce the key ideas of coarse-grained
dynamic IFC in a Java setting, and show key features of Co-
Inflow, including opaque labeled values.

We capture the essence of Co-Inflow in the CIFC calculus,
which we present in Section III. We prove that CIFC programs
satisfy a strong information security property (Section IV).
CIFC is the formal foundation for our design of Co-Inflow;
Section V describes how we extend the concepts from CIFC
to Co-Inflow.

We have a prototype implementation of Co-Inflow (via compi-
lation to Java) which we describe in Section VI. We evaluate
the feasibility and usefulness of Co-Inflow (Section VII)
by porting existing Java applications (i.e., retrofitting strong
information security guarantees to Java applications). Our ex-
perience indicates that Co-Inflow permits existing Java design
patterns with little programmer annotation effort. For example,
porting a 15,000 line Java health record application to Co-
Inflow requires just 18 additional lines of code to ensure
patients’ records are accessible only to their assigned doctors.

We explore the precision of Co-Inflow using the IFSpec
information-flow control benchmark [17]. Co-Inflow correctly
detects all security violations in the benchmark, except for
those involving reflection, a feature Co-Inflow doesn’t support.
Co-Inflow is about as precise (i.e., as few false positives for
security enforcement) as other information-flow enforcement
mechanisms. However, precision can be further improved by
rewriting the benchmark programs to take advantage of Co-
Inflow’s features. We explore the performance overhead of
our prototype implementation as well as perform experiments
that indicate how well we might expect a more full-fledged
implementation to perform.

II. CO-INFLOW OVERVIEW

In this section, we present the key concepts of coarse-grained
dynamic IFC through a simple example, and introduce the
key features of Co-Inflow. Figure 1 shows a snippet of Java
code that standardizes the formatting of phone numbers. For
presentation purposes we show straight-line code that handles
two people; more realistic code would loop over a collection
of people.

A. Context labels and field labels

Coarse-grained information-flow control is based on the idea
of computational containers: contexts in which computation
occurs. Each computational container has a context label,1 a
security label that is an upper bound on all information that
has flowed into the container. As more information enters the
container, the context label is increased in order to remain
an upper bound. In this work, every method invocation will
be a computational container. That is, every stack frame is
associated with a context label.

1In related work, this is also called a floating label, a current label, or a
program counter (pc) label.

1 Person alice = ...;
2 Person bob = ...;
3 // 1.⊥
4 String a=alice.getPhoneNum(); // 4.LAlice

5 String a1=formatNum(a); // 8.LAlice

6 alice.setPhoneNum(a1); // 11.LAlice

7

8 String b=bob.getPhoneNum(); // 14.LAlice t LBob

9 String b1=formatNum(b); // 18.LAlice t LBob

10 bob.setPhoneNum(b1);
11

12 String formatNum(String pn)
13 { // 5.LAlice | 15.LAlice t LBob

14 String pn1 = ...
15 ... // 6.LAlice | 16.LAlice t LBob

16 return pn1; // 7.LAlice | 17.LAlice t LBob

17 }
18

19 class Person {
20 String phoneNum;
21 int personId;
22 ...
23 String getPhoneNum()
24 { // 2.⊥ | 12.LAlice

25 return phoneNum; // 3.LAlice | 13.LAlice t LBob

26 }
27 void setPhoneNum(String s)
28 { // 9.LAlice | 19.LAlice t LBob

29 this.phoneNum = s;//10.LAlice | 20.LAlice t LBob

30 // Program halts, since LAlice t LBob 6v LBob

31 }
32 ...
33 }

Fig. 1. A phone formatting program. Comments indicate the current label at
the program point during execution.

To see how context labels work, let’s consider the execution
of the code in Fig. 1. (Note that in this subsection we explain
the key idea of context labels; the actual operation of Co-
Inflow differs and is explained in Section II-C.) Comments
on the right indicate the container’s context label immediately
after executing that line of code. Methods that are invoked
twice have two context labels shown, corresponding to each
of the two invocations. Numbers indicate the order of ex-
ecution. Assume that initially (line 3) the context label is
⊥, the most permissive security label, and that the method
call alice.getPhoneNum() (line 4) returns data with label
LAlice .2 Thus, after the call, the context label increases from
⊥ to LAlice , since information with label LAlice entered the
computational container.

Line 5 calls formatNum, which creates a new computational
container for the callee’s stack frame. Initially, the context
label of the callee’s container is LAlice , the same as the caller’s
context label (since the callee’s arguments and the decision to
invoke the callee is information that flows into the callee’s
container, and the caller’s context label is an upper bound

2For this example, we use labels LAlice and LBob for Alice’s and Bob’s
information respectively. In general, labels can be application specific.

1 Person alice = ...;
2 Person bob = ...;
3 // 1.⊥
4 Labeled<String> a =
5 toLabeled(alice.getPhoneNum(),
6 fieldLabelOf(alice)); // 5.⊥
7 Labeled<String> a1 =
8 toLabeled(formatNum(a),
9 fieldLabelOf(alice)); // 10.⊥

10 alice.setPhoneNum(a1); // 13.⊥
11

12 Labeled<String> b =
13 toLabeled(bob.getPhoneNum(),
14 fieldLabelOf(bob)); // 17.⊥
15 Labeled<String> b1 =
16 toLabeled(formatNum(b),
17 fieldLabelOf(b)); // 22.⊥
18 bob.setPhoneNum(b1); // 25.⊥
19

20 String formatNum(Labeled<String> pn)
21 { // 6.⊥ | 18.⊥
22 String s = unlabel(pn); // 7.LAlice | 19.LBob

23 ... // 8.LAlice | 20.LBob

24 return pn1; // 9.LAlice | 21.LBob

25 }
26

27 class Person {
28 String phoneNum;
29 int personId;
30 ...
31 String getPhoneNum() { // 2.⊥ | 14.⊥
32 String pn = phoneNum; // 3.LAlice | 15.LBob

33 return pn; // 4.LAlice | 16.LBob

34 }
35 void setPhoneNum(Labeled<String> ls)
36 { // 11.⊥ | 23.⊥
37 phoneNum = unlabel(ls); // 12.LAlice| 24.LBob

38 }
39 ...
40 }

Fig. 2. The phone formatting program with labeled values

on this information). No additional information enters the
container, and the method call returns data with label LAlice .
The context label of the caller container is already an upper
bound on this information and doesn’t need to be increased.

On line 6, we invoke alice.setPhoneNum(), which creates
a new container with context label LAlice . That method call
stores the newly formatted phone number into a field of object
alice. Each object has a field label that is an upper bound
of the information stored in its fields. If an object’s field label
is `, when data is read from a field of the object, it is treated
as information with label `. When data is stored to a field, the
object’s field label must be an upper bound of the context label.
(The programmer may explicitly increase the field label of an
object.) Assume the field label of object alice is LAlice . The
data being written to field alice.phoneNum is labeled LAlice ,
the context label of the invocation of alice.setPhoneNum,
so the field write succeeds.

Lines 8–10 format Bob’s phone number. On line 8, the
method call bob.getPhoneNum() returns data with label
LBob (assuming the field label of object bob is LBob) and so
after the call, the context label is LAlice t LBob .3 At line 10,
when we invoke bob.setPhoneNum(b1), the context label
of the callee is LAlice t LBob , which can’t flow to the field
label of bob, and execution halts (line 29) to avoid a possible
security violation.

Context labels can soundly track and control the flow of
information in a system. However, in some cases enforcement
is imprecise. This happened in the example: although the
context label was LAlice t LBob at line 29 before updating
Bob’s phone number, the data written to field bob.phoneNum

depended only on information with label LBob . The program
unnecessarily halts due to such imprecise tracking.

B. Labeled Values

The precision of coarse-grained information-flow tracking can
be improved through the use of labeled values [3], which is
a pair of a value v and a security label ` that is an upper
bound on the information on which v depends. Intuitively, a
labeled value can be passed around by a container without the
container’s context label being raised so long as the container
does not examine or compute on the value v. A container can
unlabel a labeled value, which raises the context label to at
least ` and allows the container to compute with v.

In Co-Inflow, the class Labeled implements a labeled
value, and primitive operations toLabeled and unlabel

respectively create and destruct labeled values. Expression
toLabeled(e, `) creates a new computational container to
evaluate expression e and protects its result with label value
`, allowing the programmer to control “label creep” [18] of
the context labels.

Figure 2 shows the Figure 1 code modified to use labeled
values. Line 6 constructs a labeled value using the toLabeled
operator for the phone number returned by getPhoneNum and
the field label of object alice. The operator fieldLabelOf
retrieves the field label of the argument object.

Comments on the right show the context label as this ex-
ample executes. Because line 6 constructs a labeled value
(Alice’s phone number, with label LAlice), the context la-
bel remains ⊥ after calling alice.getPhoneNum() and
fieldLabelOf(alice). The context labels of the calls to
formatNum and setPhoneNum are ⊥ at the beginning, and
rise to LAlice and LBob after the input labeled values are
opened by unlabel. The context label of the caller remains ⊥
throughout the execution, and Bob’s phone number is success-
fully updated without raising the context label: labeled values
enabled more precise tracking and control of information flow.

C. Co-Inflow

The use of labeled values can improve precision, but reduces
readability, and requires significant programmer effort to add

3`1 t `2 is the join of `1 and `2 and is as restrictive as both `1 and `2.

toLabeled annotations. Moreover, it may require changing
many method signatures to pass and return labeled values, as
happens in Figure 2.

To address this, the Co-Inflow runtime in essence inserts
toLabeled and unlabel annotations automatically, without
burdening the programmer. Indeed, Figure 1 is Java code,
but when treated as Co-Inflow code, the implicit insertion
of labeled values ensures that the runtime behavior is almost
the same as the code in Figure 2, but without the need for
programmer annotations or changed signatures.

Opaque labeled values There are differences between labeled
values in Figure 2 and the labeled values that Co-Inflow
implicitly inserts, which we refer to as opaque labeled values.
In particular, for every computational container, Co-Inflow
creates an opaque labeled value for its result. The opaque
labeled values are then dynamically tracked in subsequent
computations. Typically, in coarse-grained IFC languages such
as LIO [3], [7], [15], the programmer must supply a label for
a toLabeled operation (e.g., as in line 6 of Figure 2). Co-
Inflow removes this annotation burden by using the context
label as the label for opaque labeled values. Although easier
(and potentially more precise) than a programmer-supplied
label, the label of an opaque labeled value may itself reveal
information. To prevent this covert channel, Co-Inflow does
not allow code to inspect labels of opaque labeled values
(which is why we call them opaque).4

In addition to creating new computational containers for
method calls, Co-Inflow implicitly creates new computational
containers for field reads and writes. That is, each field read
and write is executed in its own container, which helps prevent
context labels creeping upwards unnecessarily.

Co-Inflow’s implicit insertion of computational containers
and opaque labeled values allows a programmer to get the
benefits of coarse-grained IFC with very few annotations. Co-
Inflow aligns computational containers for IFC with the natural
computational contexts of Java programs.

Object and Field Labels In Co-Inflow, each object has two
labels associated with it: an object label and a field label.
The field label is an upper bound on information stored in
the object’s fields. The object label is an upper bound on
the information that has influenced the field label as well as
an upper bound on meta-data about the object, such as its
run-time class. The field label may increase during execution
(through explicit operations) but the object label is fixed.
We ensure that if a reference to an object is in a given
computational container, then the context label of the container
protects the object label, and thus the field label can be
examined without ever needing to raise the context label.

4Previous work also allowed creation of labeled values without
programmer-supplied labels [14], [19]. A minor novelty of our work is to
make such labels opaque.

1 class Person {
2 int personId;
3 Person(...){ // constructor
4 ...
5 raiseFieldLabel(this,
6 getLabelById(personId));
7 }
8 ...
9 }

Fig. 3. Labeling data appropriately with raiseFieldLabel

Co-Inflow has a primitive operation raiseFieldLabel(o,

`) that raises the field label of object o to at least label
`. Primitives fieldLabelOf and getContextLabel allow
programmers to inspect an object’s field label and the current
context label.

Sources of Labels Co-Inflow programmers must ensure that
data entering the system is labeled appropriately. The program-
mer can do this by using raiseFieldLabel to set the field
label of objects appropriately. For example, the programmer
might ensure that when objects are created from the results of
database queries, their label is set appropriately. In the example
above, this might be done in the constructor of the Person

object, as shown in the code snippet of Figure 3.

Co-Inflow also has libraries that facilitate labeling data appro-
priately as it enters the system, for example, InputStream
implementations that return labeled values and can be used to
ensure that data entering the system is labeled appropriately.
We also provide a signature mechanism to facilitate integration
with legacy Java libraries (see Section VII).

III. LANGUAGE MODEL

We present CIFC, an imperative calculus that captures the
essence of Co-Inflow. Inspired by Middleweight Java [20], it
enables us to prove formal security guarantees (Section IV).

A. Syntax

Figure 4 shows the syntax of CIFC. For syntactic element s,
we write s to indicate a (possibly empty) list of s. A program
is a list of class definitions and an expression to evaluate. A
class definition is a class name, a list of field declarations, and
a list of method declarations. A field declaration cn f means
that objects of the class contain a field named f whose value is
either null or an object of class cn . The type of a field must
be a class name. Methods take a single argument and return
a single value. The body of a method is an expression. Valid
expressions include variables, booleans, null, comparisons,
field reads and writes, method calls, assignments, branches,
and sequences.

Label-related expressions allow programmers to express and
manipulate security labels. Metavariable ` ranges over constant
security labels. Expression toLabeled(e1, e2) constructs a
new labeled value, by evaluating e1 in a new computational

P ::= cld ; e Program
cld ::= class cn fd md Class definition
fd ::= cn f Field declaration
md ::= τ m(τ x){e} Method declaration
e ::= Expression

x variable
| true | false boolean values
| null null
| e == e comparison
| e.f field access
| e.m(e) method invocation
| new cn() object creation
| x = e assignment
| e.f = e field write
| if e then e else e condition branch
| e ; e sequence
| le label related expression

le ::= Label related expression
` label values
| toLabeled(e, e) labeled computation
| unlabel(e) unlabel labeled data
| labelOf(e) get label of labeled value
| raiseFieldLabel(e, e) raise field label
| fieldLabelOf(e) get field label
| getContextLabel() get context label

cn Identifiers of class names
f Identifiers of field names
m Identifiers of method names
x Identifiers of variables

τ ::= Type
cn class name
| bool boolean type
| Label label type
| Labeled τ labeled type

Fig. 4. Core Syntax and Types of Co-Inflow Programs

container, and protecting the result with label e2. Operators
unlabel and labelOf consume a labeled value and return,
respectively, the value that is labeled, and the label of the la-
beled value. Expression raiseFieldLabel(e1, e2) evaluates
e1 to an object, and raises its field label to at least the value
of e2. Expression fieldLabelOf(e) returns the field label
of the object that e denotes. Expression getContextLabel()
returns the current context label.

B. Operational Semantics

We define a small-step operational semantics for CIFC. We
extend the surface syntax of expressions (Figure 5) with
additional expressions that arise during evaluation: object
references ς , labeled values v `, opaque labeled values v [`], and
labelData(e, `) (used to implement construction of labeled
values). Values in the language include null, label values,
object references, labeled values, and opaque labeled values.
In addition to the syntactic restrictions shown in Figure 5, we
also require that opaque labeled values are not directly nested.

A configuration is either a pair 〈∆,H〉 (where ∆ is a stack of
computational containers and H is a heap) or the special error
configuration Exception which is used to indicate null-pointer

e ::= Expressions
. . .
| ς object references
| v ` runtime Labeled values
| v [`] opaque labeled values
| labelData(e, `) create labeled values

v ::= Values
ς object reference
| ` labels
| null null
| v ` runtime Labeled values
| v [`] opaque labeled values

κ ::= Continuations
• == e | v == • | • .f | • .f = e | v .f = • | • .m(e)
| v .m(•) | x = • | if • then e else e | • ; e
| labelData(•, `) | labelOf(•)
| toLabeled(e, •) | unlabel(•) | fieldLabelOf(•)
| raiseFieldLabel(•, e) | raiseFieldLabel(v , •)

Fig. 5. Deep syntax, values, and continuations

dereferences, security violations, and other run-time errors. In
this formalism, error configurations halt execution; we discuss
more precise handling of exceptions in Section V. A heap H is
a function from object references ς to objects 〈cn,F, `f , `o〉,
where cn is the class name of the object, function F maps
field names to values, label `f is the field label for the object
(an upper bound on the information stored in the fields), and
label `o is the object label for the object (an upper bound on
the information associated with the object reference ς and the
object’s field label).

A computational container is a tuple (e, ρ, pc, θ) where e is
the expression to evaluate, ρ is a stack of continuations (i.e.,
expressions with a hole; see Figure 5), pc is the container’s
floating context label, and environment θ maps local variables
to values. A configuration has a stack of containers ∆ where
the top of the stack is the currently executing computation;
we refer to the container at the top of the stack as the current
container. We write [] for the empty stack, and s :: S for the
stack with s pushed on stack S. A final configuration is a
configuration of the form 〈(v , [], pc, θ) :: [],H〉, that is, where
the container stack has just a single computational container
with a value v and an empty continuation stack.

We give the semantics of CIFC as a small-step judgment
CT ` 〈∆,H〉 → 〈∆′,H′〉, where class table CT is a map
from class names to class definitions. Given a list of class dec-
larations, we can construct a corresponding class table in the
obvious way (assuming that class names are distinct). Given a
program cld ; e, the initial configuration is 〈(e, [],⊥, ∅) :: [], ∅〉,
where ⊥ is the most permissive security label, and ∅ denotes
the empty heap and empty variable environment. The initial
configuration is evaluated using the class table corresponding
to the program’s class declarations. The class table does
not change during evaluation. Configurations should be well-
formed (defined in Appendix B). For example, for every object
〈cn,F, `f , `o〉 in the heap, the domain of field map F should
be all and only the fields in the class definition for cn .

E-FIELDREAD
δ = (vo.f , ρ, pc, θ) (ς, `) = openOpaque(vo)
H(ς) = 〈cn,F, `f , `o〉 pc′ = pc t `f t `o t `

v = F(f) δ′ = (v , [], pc′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: δ :: ∆,H〉

E-METHODCALL
δ = (vo.m(v), ρ, pc, θ) (ς, `) = openOpaque(vo)
H(ς) = 〈cn,F, `f , `o〉 pc′ = pc t ` t `o
lookup_md(CT , cn,m) = τr m(τa a){ebody}

θ′ = [a 7→ v] δ′ = (ebody , [], pc
′, θ′)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: δ :: ∆,H〉

E-FIELDWRITE
δ = (vo.f = v , ρ, pc, θ) (ς, `) = openOpaque(vo)
(v ′, `′) = openOpaque(v) H(ς) = 〈cn,F, `f , `o〉

(pc t ` t `′) v `f δ′ = (v , ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H[ς 7→ 〈cn,F[f 7→ v ′], `f , `o〉]〉

E-RETURN
δ = (vr, [], pc, θ) (v , `) = openOpaque(vr)

δ′ = (e, ρ, pc′, θ′) δ′′ = (v [pct`], ρ, pc′, θ′)

CT ` 〈δ :: δ′ :: ∆,H〉 → 〈δ′′ :: ∆,H〉

E-NEW
δ = (new cn(), ρ, pc, θ) δ′ = (ς, ρ, pc, θ)

ς /∈ dom(H) F = {f 7→ null | f ∈ fields(CT , cn)}
CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H[ς 7→ 〈cn,F, pc, pc〉]〉

Fig. 6. Selected inference rules

Given a program P = cld ; e, we write P ⇓ 〈∆,H〉 to
mean that the initial configuration for P can take zero or
more steps to final configuration 〈∆,H〉, using the class table
corresponding to cld.

Selected inferences rules for the semantics are given in Fig-
ures 6 and 7, and selected auxiliary functions in Figure 8;
remaining rules and auxiliary functions are in Appendix E.

The semantics ensures certain invariants hold during execu-
tion. As is standard in coarse-grained information-flow control,
given a computational container δ = (e, ρ, pc, θ), the context
label pc is always an upper bound on the labels of any
(unlabeled) value that appears in expression e, continuation
stack ρ or the range of variable context θ. So, for example,
rule E-UNLABEL takes a labeled value v `, and unlabels it,
ensuring that the context label is increased to be at least ` and
allowing value v to be used in the current container.

Another invariant is that for any object 〈cn,F, `f , `o〉 in the
heap, the field label `f is an upper bound of the labels of any
(unlabeled) value in the range of field map F, and object label
`o is an upper bound on information that may be learned by
having a reference to this object, by the class cn of the object,
and by the current value of the field label. The object label

E-TOLABELED
δ = (toLabeled(e, v), ρ, pc, θ)

e contains no assignments (`v, `) = openOpaque(v)
pc′ = pc t ` δ′ = (labelData(e, `v), [], pc

′, θ)
δ′′ = (toLabeled(e, v), ρ, pc′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: δ′′ :: ∆,H〉

E-LABELDATA
δ = (labelData(v , `v), ρ, pc, θ)

pc v `v δ′ = (v `v , ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-UNLABEL

δ = (unlabel(v ′), ρ, pc, θ) (v `, `′) = openOpaque(v ′)
pc′ = pc t ` t `′ δ′ = (v , ρ, pc′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-LABELOF

δ = (labelOf(v ′), ρ, pc, θ) (v `, `′) = openOpaque(v ′)
pc′ = pc t `′ δ′ = (`, ρ, pc′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDLABELOF
δ = (fieldLabelOf(vo), ρ, pc, θ)

(ς, `) = openOpaque(vo) H(ς) = 〈cn,F, `f , `o〉
pc′ = pc t ` t `o δ′ = (`f , ρ, pc

′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-RAISEFIELDLABEL
δ = (raiseFieldLabel(vo, v`), ρ, pc, θ)

(ς, `) = openOpaque(vo) (`f
′, `′) = openOpaque(v`)

H(ς) = 〈cn,F, `f , `o〉 pc t ` t `′ v `o
`f v `f ′ δ′ = (vo, ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H[ς 7→ 〈cn,F, `f ′, `o〉]〉

Fig. 7. Selected inference rules for label-related expressions

openOpaque(v)
def
=

{
(v0, `) if v = v

[`]
0

(v ,⊥) otherwise

Fig. 8. Selected auxiliary functions

and field label for a newly created object are set to the context
label of the container that created it (see rule E-NEW). The
object label remains fixed for the lifetime of the object but
the programmer may raise the field label of an object dur-
ing execution (using the raiseFieldLabel expression; see
rule E-RAISEFIELDLABEL).5 Rule E-FIELDWRITE shows the
field label of an object must be an upper bound of information

5Having two labels for an object where the object label is fixed and the field
label floats upwards is an instantiation of the ideas presented by Buiras et al.
[16], adapted for an object-oriented setting. We use a single field label for all
fields of an object, a design decision that trades off precision and usability.

written into a field of the object.

The programmer can create new computational containers
using the toLabeled(e1, e2) expression. Rule E-TOLABELED
pushes a new computational container onto the container stack
to evaluate e1. The expression labelData is used to construct
a labeled value after e1 is evaluated, checking that e2 is a suit-
able label for the labeled value. Note that rule E-TOLABELED
requires that expression e1 does not contain any assignments
to local variables. This is to ensure that any side-effects that
occur during evaluation of e1 do not inappropriately escape
the scope of the computational container.

An innovation of this work is that new computational con-
tainers are also created for method calls and field reads, as
demonstrated by rules E-METHODCALL and E-FIELDREAD.
This automatic creation of computational containers fits nat-
urally with Java-like computational patterns to reduce label
creep without significant programmer annotation.

Similarly, while the programmer has the ability to explic-
itly create and manipulate labeled values (using expressions
toLabeled, unlabel, and labelOf), the semantics of CIFC
automatically creates opaque labeled values whenever a com-
putational container finishes evaluation. In rule E-RETURN,
where a container has finished evaluating an expression to
value vr, the parent container is given an opaque labeled value
v [pct`], where (v , `) = openOpaque(vr). Value vr may itself
be an opaque labeled value; auxiliary function openOpaque
(Figure 8) returns (vr,⊥) if vr is not an opaque labeled
value, and (v , `) if vr is opaque labeled value v [`]. The
inference rules automatically open opaque labeled values when
the underlying value is needed (see, e.g., rule E-RETURN).
As described in Section II-C, this provides much of the
benefit of labeled values without the programmer needing
to provide toLabeled and unlabel annotations. Note that
opaque labels are not directly examinable by the programmer:
she has no ability to determine whether a value is an opaque
value and no ability to examine its label.

Because the inference rules are opening opaque labels and per-
forming operations that are appropriately tainted by the labels
of opaque labeled values, these rules are essentially creating
(and immediately destroying) computational containers, again
preventing context label creep without undue programmer an-
notation burden. For example, in rule E-FIELDWRITE, which
evaluates field write vo.f = v , if vo and v are opaque labeled
values with labels ` and `′, the rule updates the field as if it
occurred in a container with context label pc t ` t `′.

C. Type system

The type system of CIFC does not enforce security: security
in CIFC is achieved via the run-time mechanisms that track
and control the propagation of information during execution.
The type system does ensure that the evaluation of CIFC does
not get stuck.6 Figure 4 gives the types used in CIFC. We have

6Note that evaluation may result in an error configuration, due to derefer-
encing null values or security violations.

UNLABEL
CT ,Γ,H ` e : Labeled τ

CT ,Γ,H ` unlabel(e) : τ

LABELOF
CT ,Γ,H ` e : Labeled τ

CT ,Γ,H ` labelOf(e) : Label

FIELDLABELOF
CT ,Γ,H ` e : cn

CT ,Γ,H ` fieldLabelOf(e) : Label

LABELEDVAL
CT ,Γ,H ` v : τ

CT ,Γ,H ` ` : Label

CT ,Γ,H ` v ` : Labeled τ

OPAQUELABELEDVAL

CT ,Γ,H ` v : τ
CT ,Γ,H ` ` : Label

CT ,Γ,H ` v [`] : τ

LABELED
CT ,Γ,H ` e1 : τ

CT ,Γ,H ` e2 : Label

CT ,Γ,H ` toLabeled(e1, e2) : Labeled τ

Fig. 9. Selected typing rules for expressions

typing judgments for expressions, continuations, continuation
stacks, containers, container stacks and configurations. The
judgment for expressions has the form CT ,Γ,H ` e : τ where
typing environment Γ maps variables to types. Figure 9 shows
selected rules for this judgment. The typing system is mostly
standard, although note that in rule OPAQUELABELEDVAL,
an opaque labeled value v [`] has the same type as v , allowing
opaque labeled values to be used wherever non-labeled values
can be used. Additional rules for all type judgments are
presented in Appendix D.

IV. SECURITY GUARANTEE

We prove that our calculus CIFC satisfies noninterference
[18], [21]: a well-known strong information security property
that, intuitively, guarantees that publicly-observable outputs
of a system do not reveal any confidential information. The
exact definition of what is observable leads to subtly different
security guarantees. We focus on termination-insensitive non-
interference (TINI) [21], a common variant that assumes
the termination and timing behavior of the system is not
observable. We do, however, assume that an adversary can
observe significant portions of program configurations. This
over-approximates what might be observable by an adversary
in a setting that contains explicit output channels.

We assume that there is a label `A such that the adversary that
is permitted to observe any and all information with label `
such that ` v `A. Let L = {` | ` v `A} be the set of labels
that the adversary may observe; intuitively, data and containers
associated with these labels are publicly observable, or “low
security”. Let H = {` | ` 6v `A} be the labels that cannot flow
to `A; these are the confidential, or “high security” labels.

To state TINI formally, we must define low equivalence of
configurations. Intuitively, two 〈∆1,H1〉 and 〈∆2,H2〉 are low
equivalent (written 〈∆1,H1〉 ≈L 〈∆2,H2〉) if the publicly-
observable portions of the two configurations are the same,
that is, the adversary would not be able to distinguish the
configurations. A complete definition of low equivalence is
given in Appendix C.

Using low equivalence, we can state our theorem that CIFC
enforces TINI. If we have a program that we execute with
two different initial high-security inputs and both executions
terminate, then the final configurations are low equivalent.
That is, the adversary cannot distinguish the results of the
executions even though they compute with different high-
security information. Without loss of generality, we assume
that there is a distinguished class cnmain with a method main
that is invoked with the high-security values.

THEOREM. Let cld be a sequence of class declarations with
distinguished class cnmain with method main . Let ` ∈ H be
a high-security label, let e1 and e2 be expressions, and let

P1 = cld ; new cnmain().main(toLabeled(e1, `))

and

P2 = cld ; new cnmain().main(toLabeled(e2, `)).

If P1 ⇓ 〈∆1,H1〉 and P2 ⇓ 〈∆2,H2〉 then 〈∆1,H1〉 ≈L
〈∆1,H1〉.

The proof of Theorem IV is standard: we show that as the
two executions advance, their configurations continue to be
low equivalent. We have formalized CIFC and the proof of
Theorem IV in Coq.7 A sketch of the proof is in Appendix C.

V. FROM CIFC TO CO-INFLOW

The Co-Inflow language extends the ideas that proven secure
in CIFC to cover a more realistic Java-like language. Although
we have no formal proof of the security guarantees of Co-
Inflow, the proof for CIFC provides assurance that the design
of Co-Inflow correctly tracks and controls information flow.

Additional language features Java-like languages distinguish
expressions from statements, and Co-Inflow has a form of
toLabeled that accepts statements. Arrays are treated sim-
ilarly to objects: each array is associated with an object
label and a field label. The field label is an upper bound on
the information conveyed by knowing the array’s elements.
Constructors are treated analogously to methods. Initializers
are treated as code that runs inside the constructor’s container.
Lambda expressions are similar to methods: a new container is
created for each invocation of the lambda-expression function.
Every class has an object label and field label that protect its
static fields: the field label is an upper bound on the informa-
tion contained in the class’s static fields. Static initializers and
static methods are treated similarly to methods.

7https://github.com/HarvardPL/CIFC/tree/master/coinflow

Control-flow constructs such as loops, breaks, continues, and
returns do not pose any challenge: they are computations
that execute within a container and do not need any spe-
cial handling in Co-Inflow. Exceptions, however, can create
information flows, as a container may exit either normally
or exceptionally. Soundly tracking information flow from
exceptions while allowing existing programming patterns is
challenging. A common approach (which we take in the
formalism of Section III) is to prevent exceptions from being
caught. However, many Java programs rely extensively on
exceptions, meaning that dramatically changing the behavior
of exceptions (such as with delayed exceptions [22]) would
require significant rewriting of Java programs. In our prototype
implementation, we partially track information flow due to
exceptions by raising the context label of the container that
catches an exception to the context label of the container that
threw the exception. This correctly tracks information flow due
to thrown exceptions but may fail to soundly track information
flow due to normal termination. We are currently investigating
dynamic discovery of information flows due to exceptions—
in the style of Shroff et al. [23]—which can provably bound
the information leaked due to exceptional control flow while
allowing legacy Java programming patterns.

Application-specific label lattices In general, the appropriate
lattice of security labels to use will be specific to the ap-
plication. For example, the lattice may be the powerset of
application users, or a fixed and finite set of security levels.
To enable this, a Co-Inflow application can define its own
labels and the flow-to relation over labels. The classes that
implement labels and the flows-to relation are specified at the
beginning of execution of a Co-Inflow program, and cannot
be changed during execution.

Sources and sinks It is important for an application program-
mer to be able to specify appropriate labels for data at sources
(i.e., where information enters the application) and at sinks
(i.e., where information leaves the application or is used in
security-relevant operations). Co-Inflow provides mechanisms
for programmers to easily indicate sources and sinks and the
labels associated with them. That is, if a container accesses
a source, its context label will be increased to the label
associated with the source, and a container accessing a sink
will be checked to ensure that its context label flows to
the sink’s label. Sources and sinks can be fields of objects,
parameters to methods, or method return values.

Enforcement actions Security violations occur when inappro-
priately labeled data flows to a sink or an object’s field, and
when operations such as raiseFieldLabel and labelData

do not satisfy their required label constraints. Co-Inflow can
be configured to take one of three possible actions when a
security violation occurs: (1) the security violation is logged
but execution continues; (2) an exception is thrown, which
can be caught and handled by the application; or (3) program
execution is terminated. Option 1 is useful to audit the security
of a system without intervening in execution, but may lead

https://github.com/HarvardPL/CIFC/tree/master/coinflow

to arbitrary information leakage. Option 2 provides the most
flexibility, allowing programmers to handle violations appro-
priately, but as with other Co-Inflow exceptions, fails to track
information flow due to normal termination (i.e., when the
enforcement mechanism does not detect a security violation).

VI. IMPLEMENTATION

We have a prototype implementation of Co-Inflow via com-
pilation to Java.8 The implementation is about 3,500 lines
of code and uses the Spoon library [24] for AST rewriting.
The resulting Java program explicitly tracks the current label
of containers and the field and object labels of objects, and
constructs and destructs labeled values and opaque labeled
values. To achieve this, it uses the Co-Inflow runtime system: a
Java library comprising about 550 LoC; we describe it below.

Compilation After disambiguation and type checking, com-
pilation of a Co-Inflow program goes through three stages.

First, an analysis is performed to ensure that there are no local
side-effects in toLabeled’s computation (first argument). As
in CIFC, this ensures that information does not inadvertently
escape from a container.

Second, we perform a dataflow analysis to determine which
expressions will evaluate to opaque labeled values, and thus,
which expressions must be opened (i.e., unlabeled) before
being used. Whereas the CIFC type system treats opaque
labeled values the same as values and dynamically opens
opaque labeled values as necessary, for Co-Inflow we precisely
track which expressions will evaluate to opaque labeled values
and statically insert coercions to unlabeled values. This is an
intraprocecural analysis, as we ensure that all method argu-
ments are opaque labeled values (although for efficiency and
compatibility with Java methods, we pass labels of arguments
via the Co-Inflow runtime system, described below).

Third and finally, we implement labeled values, opaque labeled
values, containers, and Co-Inflow primitives by inserting calls
to the Co-Inflow runtime system.

Runtime System Labeled values and opaque labeled values
are represented as objects of the classes Labeled<T> and
OpaqueLabeled<T> respectively. Each of these objects con-
tains a value of parameter type T and a security label. The
runtime system contains utility methods toOpaqueLabeled

(which constructs an opaque labeled value whose label is
the current context label) and openOpaque (which opens
an opaque labeled value, returning the value and raising the
context label as needed).

Co-Inflow uses a shadow stack to keep track of computational
containers. The top of the stack is the current container.
We insert calls to the Co-Inflow runtime to push and pop
containers as appropriate: just before and after method calls,
constructor calls, toLabeled expressions, and field reads.9

8https://github.com/HarvardPL/Co-InflowPrototype
9We perform some optimizations and remove some pushes and pops when

they are unnecessary. E.g., field reads may not require a push and pop.

Each container on the stack consists of a context label and
(for containers for method and constructor calls) the labels
of arguments to the callee. That is, all arguments to callees
are treated as opaque labeled values, but instead of being
represented as objects of class OpaqueLabeled<T>, the labels
are passed on the shadow stack. This avoids changing the
signatures of methods and constructors and allows correct
dynamic dispatch of calls.

Every object in Co-Inflow requires an object label and a field
label. During compilation we insert two instance fields into
class declarations to track these. Accessing the object label or
field label of an object is translated as accesses to these new
fields. Before field reads we insert calls to the runtime system
to raise the context label to the object’s field label, and before
field writes we check that the context label may flow to the
object’s field label. Although arrays are treated like objects in
Co-Inflow, when compiling we cannot insert additional fields
into arrays to track the object and field labels. Instead, the
runtime system maintains a map from the array to the object
and field labels for the array. This correctly tracks the object
and field labels for arrays, but introduces additional overhead.

In Co-Inflow, initializers are treated as code that executes
inside the container of the invoked constructor. To implement
this, we rewrite field initializers and instance initializers as a
private Java method that is invoked from the constructor.

Co-Inflow primitives (such as labelOf, getContextLabel,
etc.) and source and sink annotations are simply translated
to calls to the runtime system. Label checks are inserted as
appropriate to correctly track and control information flow.

Expression toLabeled(e1, e2) is implemented by first eval-
uating e2 in the current container, and then pushing a new
container to evaluate e1. Expression e1 can be a Java ex-
pression (including Supplier Lambdas to allow execution of
statements). After checking that the context label for the new
container can flow to the label e2, we construct a labeled value
(the result of e1 labeled with the result of e2) and pop the
container.

To track information flow arising from thrown exceptions, we
modify catch blocks. When a catch block is executed, the
container that threw the exception will still be at the top of the
shadow stack; the catch block unwinds the shadow stack until
the catch block’s container is at the top, and raises its context
label appropriately. This ensures that the context label of the
container that catches the exception is at least as restrictive as
the context label of the container that threw the exception.

Interaction with Legacy Java Code Our prototype imple-
mentation of Co-Inflow is based on source-code rewriting.
Problems arise when interacting with legacy code for which
the source code is not available for rewriting: Co-Inflow cannot
precisely track information flow in code that is available only
as bytecode. We could implement Co-Inflow as a byte-code
rewriter (and thus be able to rewrite bytecode for which source
code is not available), but would still encounter similar issues

https://github.com/HarvardPL/Co-InflowPrototype

for native code (i.e., code for which neither source code nor
bytecode is available).

For objects that we cannot rewrite, we track their object and
field labels using a map, similar to our mechanism for tracking
these labels for arrays.

In order to handle legacy library methods, we allow pro-
grammers to specify the read effect and write effect of a
method call. The read effect is a set of objects that must over-
approximate the objects that the method may read and simi-
larly the write effect must over-approximate the objects that
the method may write. For example, a method o.toString()

might have a read effect of {o}, and an empty write effect.

When we execute a legacy method m, we create a new
container which serves as the computational container for the
entire method call to m (including any other non-rewritten
code it invokes). We raise container’s context label to the join
of field labels of all objects in the method’s read effect before
executing the call. If m calls into some rewritten code m′, then
information flow between m′ and m will be correctly tracked.
After the call finishes, we check that the context label for m
flows to the field label of each object in the write effect. This
conservatively approximates the information flows that may
occur during the method call. We also provide a signature
mechanism to specify sinks for legacy methods.

VII. EVALUATION

We have evaluated Co-Inflow, focusing on validating its fea-
sibility, precision, and usability. We ported three existing Java
applications to Co-Inflow to evaluate feasibility and usability,
measuring performance overhead and how many code changes
were required. We choose these applications because they have
interesting security policies that Co-Inflow can help enforce,
and they are implemented in Co-Inflow-supported versions
of Java. We evaluated precision of enforcement using the
IFSpec core benchmark suite [17]. Performance evaluation was
conducted on a Macbook Pro with an Intel Core i7 2.2Ghz
processor and 16GB RAM, using Java version 8.

A. Human Resources Application

We ported an HR Management application10 (HR) to Co-
Inflow, which comprises approximately 4K lines of code
(LoC). It supports basic human resource management, allow-
ing users to add and search employees, change their work
schedules and salaries. Users may search for employees’
information, which is then displayed to the user.

In the HR case study, we want to enforce the security policy
that only users that are managers can read information of
employees. We use the powerset of user ids as security labels
and allow flow from employee user ids to manager user ids.
We insert calls to raiseFieldLabel on objects representing
employee data to set the field label to the appropriate user id.

10https://github.com/HamzaYasin1/HR-Management-System-in-Java-using-
swing-framework

We annotate user interface code as a sink, labeled with the
user id of the currently logged-in user.

We ran two workflows on the application: (1) a manager
searching and accessing employees’ profiles; and (2) a (non-
manager) employee searching and accessing employees’ pro-
files. The first workflow contains only intended information
flow whereas the second workflow violates the intended se-
curity policy. As expected, the Co-Inflow application permits
the first workflow and intervenes to prevent showing employee
details to the non-manager.

The programmatic construction of the security label lattice and
the annotations to indicate the sources and sinks of information
were the only changes we made to the application to port
it from Java to Co-Inflow. In total, we added 20 LoC: 16
to implement the security labels; 1 to raise objects’ field
labels; and 3 to specify sinks. Note that the prototype allows
programmers to indicate sinks using pattern matching; in this
case, only the search result UI widget was marked as a sink.

B. Health Records Application

We ported HealthPlus,11 a health records application imple-
mented in approximately 15K LoC. Its functionality includes
registration of patients, making appointments, storing patient
records, pharmacy billing, and pharmacy stock controlling.

HealthPlus comes with a database of example personnel with
different roles, e.g., doctors, pharmacists, and receptionists.
Patients can make appointments with doctors. The application
allows doctors to search for all patients’ information.

We want to enforce the policy that a doctor can learn patient
information only of patients assigned to that doctor. For
security labels, we use the powerset of patient ids and doctor
ids, with information-flow permitted from a patient to a doctor
only if the doctor is assigned to the patient. Note that the
information-flow relation thus depends on data that may be
modified during execution.

Annotations are added to indicate the sources and sinks of
information. A patient’s information is labeled with her id
after being loaded from the database. We also annotate user
interface code as a sink, labeled with the id of the logged-in
doctor. As expected, the Co-Inflow program is able to enforce
the intended security policy, preventing doctors from learning
information about patients they are not assigned to.

We added 18 LoC to the original system: 11 LoC to implement
the security label lattice; 6 LoC to indicate sources of patient
information; and 1 LoC to indicate sinks of information.

C. Roller Application

We ported Apache Roller12 (version 2.5.x13), an open-source
blog server. It can support thousands of users and blogs. In
addition to basic blogging functionality, it features comment

11https://github.com/heshanera/HealthPlus
12https://roller.apache.org/
13https://github.com/apache/roller/tree/roller-5.2.x

https://github.com/HamzaYasin1/HR-Management-System-in-Java-using-swing-framework
https://github.com/HamzaYasin1/HR-Management-System-in-Java-using-swing-framework
https://github.com/heshanera/HealthPlus
https://roller.apache.org/
https://github.com/apache/roller/tree/roller-5.2.x

moderation, search, group blogging, and blogger-controlled
layout and style. Each blog can have multiple collaborators
with three permission levels: owner, editor, and drafter. It is
implemented in approximately 48K LoC in Java 1.7.

We added two information-flow policies to the application.
The first stops comments marked as spam from being persisted
to the database. The second policy ensures that blogs with a
confidential tag would not be leaked to public readers (i.e.,
unauthenticated users).

We build a product lattice of two information flow lattices
to enforce the two policies. To track spam, we use a two-
point lattice consisting of the labels spam and valid. To track
confidential information, we also use a two-point lattice, but
with labels confidential and public.

We add annotations to indicate the sources and sinks of
information. For the first policy, a comment is labeled with
the spam label based on Roller’s spam-detecting heuristics.
Database API calls are annotated as sinks that require valid
data. For the second policy, a blog post is labeled confidential
after being loaded from the database if it has a confidential tag.
We annotate a POST response as a sink with label confidential
or public based on whether the current user is authenticated.
As expected, the Co-Inflow version enforces the intended
security policies.

We added or modified a total of 41 LoC to enforce these
policies. The lattices are implemented with 15 LoC and
source/sink annotations take 14 LoC. Another 12 Loc are used
to solve a precision issue: Co-Inflow protects all fields of an
object with a single field label, which is efficient if all fields
contain information with the same security label, but can be
imprecise. Roller has an object that implements a cache for
fast loading; the object also contains fields to record hit and
miss statistics which are updated when both confidential and
public pages are accessed, resulting in label creep for the entire
cache object. We refactor the cache object to track information
flow more precisely, by moving the statistics fields into their
own object. This allows the cache itself to avoid label creep
and prevent the false alarms caused by the statistics fields.

D. IFSpec benchmark

We used the IFSpec benchmark suite [17] to evaluate Co-
Inflow’s precision. IFSpec covers a broad range of different
information flows found in real-world programs. It provides a
core suite and extension suites. We evaluate Co-Inflow on the
core suite of IFSpec, and the web vulnerability extension suite
(which subsumes SecuriBench Micro14). The core suite con-
tains 80 test cases covering various language features including
class initializers, exceptions, reflection, aliasing, arrays, and
library calls. The web vulnerability extension provides 152
test cases.

14https://github.com/too4words/securibench-micro

TABLE I
IFSPEC BENCHMARK RESULTS. TRUE POSITIVES, FALSE POSITIVES,

TRUE NEGATIVES, AND FALSE NEGATIVES ARE REPORTED FOR
CO-INFLOW WITH ONLY SOURCE AND SINK ANNOTATIONS (“ORIGINAL”)

AND WITH ADDITIONAL ANNOTATIONS FOR PRECISION.

TP FP TN FN
Original 141 47 41 3

Additional annotations 141 21 67 3

TABLE II
IFSPEC RESULTS FOR CORE SUITE AND WEB VULNERABILITY SUITE BY

CATEGORY. NUMBER IN PARENTHESES INDICATE NUM. OF TEST CASES IN
EACH CATEGORY. ONE TEST CASE CAN BE IN SEVERAL CATEGORIES.

FP TP TN FN
Core Suite (80) 24 35 18 3
Explicit flow (46) 14 18 12 2
Implicit flow (34) 10 17 6 1

Aliasing (11) 4 5 2 0
Arrays (12) 2 7 3 0

high-conditional (11) 6 3 2 0
library (7) 1 5 1 0

reflection (7) 0 1 3 3
simple (18) 7 6 5 0

exception (11) 2 6 2 1
casting (2) 1 1 0 0

class-initializer (7) 1 4 2 0
Web Vulnerability Suite (152) 23 106 23 0

Basic(47) 3 39 5 0
Collection(19) 5 14 0 0

DataStructure(8) 3 5 0 0
Factories(6) 1 3 2 0

Inter-procedual(23) 1 14 8 0
Predicate(9) 0 5 4 0

Reflection(4) 0 4 0 0
Sanitizers(6) 1 5 0 0

Session(4) 1 3 0 0
StrongUpdate(5) 2 1 2 0

We compile all test cases as Co-Inflow programs, using
scripts to automatically insert sink and source annotations in
accordance with the test case’s specification.

The first row of Table I (labeled “Original”) summarizes the
results of the benchmark suite. Note that we did not add
any annotations other than sources and sinks. The column
marked TP (True Positives) indicates the test cases where
Co-Inflow correctly detects an insecure information flow; FP
(False Positive) is where Co-Inflow incorrectly reports an
insecure information flow even though the test case is secure;
TN (True Negative) is where Co-Inflow correctly reports no
insecure information flows; and FN (False Negative) is where
Co-Inflow incorrectly reports no insecure information flows
even though the test case is insecure.

Table II presents detailed benchmark results by category.

Co-Inflow is correct for 182 out of the 232 test cases (=78%),
with a precision15 of 75%. The 3 false negatives are due
to information flow via Java’s reflection mechanism, which
Co-Inflow does not track. The 47 false positives are due to
imprecision in the tracking of information flows. Most are

15Precision is computed as #TP
#TP+#FP

.

https://github.com/too4words/securibench-micro

caused either by coarse granularity (i.e., the default computa-
tional containers are not precise enough) or because sensitive
data is stored in the field of an object that was created
in a non-sensitive context. (Since we have not added any
raiseFieldLabel annotations, the field label of objects is
that the same as context label of the container that created
the object.) We discuss the remaining causes of false positives
below.

Co-Inflow is comparable in precision to other tools: Joana
[25], a static fine-grained IFC tool for Java bytecode, has 74%
precision and false negatives due to reflection.

Some of Co-Inflow’s false positives can be addressed by
additional annotations, such as inserting raiseFieldLabel

to set the field label of objects correctly for the data intended
to be stored in their fields or using finer-grained computational
containers (by inserting toLabeled annotations and/or refac-
toring methods). We did this on all of the false positive test
cases. The results are summarized in the second row of Table I
(labeled “Additional annotations”). Of the 47 false positives,
additional annotations converted 26 of them to true negatives,
improving the precision of Co-Inflow to being correct on 208
out of the 232 test cases (=90%) with a precision of 87%.

The remaining 21 false positives can be placed into three
categories: (1) computations that read sensitive data but whose
results do not depend on the data due to, e.g., an arithmetic
identity or casting a long value to an int; (2) arrays where
elements are heterogeneously labeled (Co-Inflow uses a single
label to protect all of an array’s elements); (3) fields that
contain sensitive data are over-written with non-sensitive data
(Co-Inflow does not allow field labels to be lowered).

More details of our benchmark results are in Appendix A.

E. Performance

Our prototype implementation shows reasonable overhead for
the case studies. For the HR application, we measured the per-
formance of 4,000 searches of employee information (where
each search requires loading information from the database
and displaying the information on the UI). For every request,
a computational container is created to load employee records
to a set of objects; every object is labeled with the employee’s
id; and labels are checked when information is sent to a UI
element. The Co-Inflow version has longer average latency
(1.16ms vs. 1.01ms = 15% oerhead) and 99th percentile
latency (2.58ms vs. 2.07ms = 25% overhead).

For the HealthPlus application we measured the performance
of 4,000 searches of a patient’s information by a doctor (where
each search loads the patient’s record from the database; stores
the record in an object; and displays the record on the UI). For
each request, a computational container is created for loading
information; the field label of the object storing a patient’s
record is raised appropriately; and labels are checked when
the object’s contents are sent to UI elements. The Co-Inflow
version has longer average latency (7.3ms vs. 6.4ms = 14%

overhead) and 99th percentile latency (10.9ms vs. 8.5ms =
28% overhead).

For the Roller web application, we compare the performance
of the Co-Inflow and Java versions using the benchmarking
tool Apache JMeter.16 Roller provides a JMeter script for stress
testing that uses 5 threads and 1,000 requests which mimics
real traffic by accessing various URLs (e.g., pages and feed)
and introduces random delays between requests. We run the
script on both the original Roller and Co-Inflow version. The
Co-Inflow version has the same average throughput as the
original (2.6 requests per second) but longer average latency
(29ms vs. 23ms = 26% overhead) and 99th percentile latency
(80ms vs. 58ms = 38% overhead).

Additional engineering can reduce this overhead significantly.
To investigate the potential performance of a more full-
fledged implementation (perhaps done as bytecode rewriting
at class-load time), we hand-coded a phone-number formatting
program (similar to Figure 1) in Java that explicitly represents,
manipulates, and checks security labels. Unlike the Co-Inflow
runtime implementation, context labels are represented as local
variables in a method body, labels of method arguments are
passed as additional arguments, and all object labels and field
labels are represented as additional instance fields. Moreover,
security labels are represented as bit-packed integers, with bit
operations to implement meet and join. These modifications
remove the need for a shadow stack and the map from objects
to object labels and field labels and allow more efficient
handling of security labels.

We tested the performance of this implementation by a
loop whose body creates a new Person object, then calls
getPhoneNum, formatNum, and then setPhoneNum with the
newly formatted number. Method formatNum simply formats
the input phone number by adding country code as a prefix. We
compared our implementation that explicitly tracks labels with
a Java version without any label tracking or checks. We run
both implementations for 10k iterations, for k ∈ {3, 6, 9, 12}.
The performance difference between the implementations is
negligible, indicating that a more full-fledged implementation
could achieve very low overhead.

F. Developer effort

To port a Java application to Co-Inflow, a developer must
understand the desired information flow restrictions of an ap-
plication. She must then (1) implement a security label lattice
that can express the intended information-flow restrictions and
(2) identify and annotate the sources and sinks of sensitive
information. As seen from the case studies above, the numbers
of lines of code to accomplish these two tasks are relatively
small. However, identifying all sources and sinks requires
familiarity with the application. If a source or a sink is not
correctly annotated, then Co-Inflow may fail to enforce the
desired restrictions.

16https://jmeter.apache.org/

https://jmeter.apache.org/

Assuming all sources and sinks are correctly annotated, the
desired restrictions correctly encoded in the lattice, and that
Co-Inflow’s mechanisms are correctly tracking all relevant
information flows, Co-Inflow will now soundly enforce the
information-flow restrictions. That is, if no security error is
raised at runtime, there is no security violation. However, Co-
Inflow may be imprecise and raise a security error when there
is no security violation. Code can be refactored to improve
precision, such as factoring fields into their own objects (as
we did in the Roller application), refactoring methods to have
finer-grain containers (as we did in some IFSpec benchmarks),
and proactively raising the field label of objects. To identify
imprecision, the developer must exercise the application and
discover situations where a security error is raised inappropri-
ately. This iterative process relies on a reasonable test suite to
exercise the application’s functionality.

VIII. RELATED WORK

Java IFC Java is a popular target language for IFC research,
both source code [2], [26]–[29] and bytecode [25], [30],
[31]. Jif [2] is a well-known tool for static fine-grained
IFC. Programmers can annotate variables, values, and various
program elements with security labels. Jif can be precise and
efficient but may require significant programmer effort. By
contrast, Co-Inflow causes and incurs runtime overhead, but
requires relatively less annotation effort. Moreover, based on
our experience, existing Java design patterns can be used in
Co-Inflow without significant change, whereas porting Java
programs to Jif often requires significant effort.

Laminar [28] is a dynamic IFC approach with similarities to
Co-Inflow. Laminar provides a programming model to retrofit
security policies onto existing programs. It introduces a lexi-
cally scoped security region which is protected by a secrecy
label and integrity label. Programmers can create security
regions to protect sensitive data. Co-Inflow by default protects
every method call with a single label. Laminar relies on its OS
and JVM modification to support dynamic IFC enforcement.
In contrast, Co-Inflow is a programming language approach
which is more flexibly deployable.

Aeolus [32] also implements coarse-grained dynamic IFC in
Java, using threads as computational containers. A combina-
tion of runtime mechanisms and language restrictions limit
information flow between containers. For example, the only
memory that can be shared between containers must be special
encapsulated objects that perform run-time label checks. These
restrictions result in very low overhead label tracking, but
Aeolus’s programming model is a larger departure from Java’s
than the Co-Inflow approach.

Coarse-grained IFC Coarse-grained IFC ideas stem from
security research in operating systems [33]–[35]. These ideas
have also been applied to other domains, e.g., the web [7]–[9];
mobile applications [11], [12], and IoT [10]; and distributed
systems [32], [36], [37]. LIO is a Haskell library that imple-
ments OS-like IFC enforcement in a language-based setting

[3], [15]. Heule et al. [6] introduce a general framework for
coarse-grained IFC in any programming language in which
external effects can be controlled. Lu et al. [38] introduce
a type system for enforcing nontransitive coarse-grained IFC
policies for component-based software.

Co-Inflow is inspired by existing frameworks, particularly
LIO. Our work adapts and specializes existing coarse-grained
IFC work for Java. In addition, we use opaque labeled values
as a practical programming mechanism, i.e., permitting labeled
values where programmers do not explicitly provide a label.
An early version of LIO (described by Stefan et al. [19]) also
permitted the creation of labeled values without a programmer-
supplied label, as does a calculus of Vassena et al. [14].
Unlike Co-Inflow, they allow a program to inspect the label of
these labeled values. They ensure security by always raising
the context label to the label of the inspected labeled value,
whereas we prevent the code from inspecting the label of
the opaque labeled value. Without also having non-opaque
labels, this enforcement mechanism is unlikely to be a usable
programming model due to unpredictability of context label
changes, as described by Stefan et al. [19]. Indeed, this
design was abandoned by LIO in favor of non-opaque labeled
values.17

Fine- and coarse-grained IFC equivalence Recent work has
shown that fine- and coarse-grained information flow control
(IFC) systems are equivalent in terms of precision. Rajani et
al. [13], [39] show that type systems for coarse- and fine-
grained IFC are equivalent in precision and Vassena et al. [14]
show a similar result for dynamic IFC mechanisms. These
results encourage the adoption of coarse-grained IFC, as we
can achieve the benefits (potentially less runtime overhead,
better fit with existing language abstractions, more intuitive
for programmers) without fear of losing precision.

IX. CONCLUSION

We introduce Co-Inflow, a language that demonstrates that
coarse-grained dynamic IFC is a good match for imperative
object-oriented programming languages such as Java. Co-
Inflow aligns coarse-grained IFC mechanisms with existing
Java language abstractions, allowing relatively precise tracking
of information with few programmer annotations. This is ac-
complished in part by the use of opaque labeled values, which
the Co-Inflow runtime system automatically and securely uses
to increase precision in information-flow control. Programmers
can add additional annotations to further improve precision.

Our prototype implementation of Co-Inflow, and our validation
using existing Java programs and the IFSpec benchmark
suite, indicate that coarse-grained dynamic IFC for Java-like
language is feasible and is usable with potentially very low
overhead. A Coq formalization of the core calculus CIFC and
a proof of noninterference provides assurance that Co-Inflow
correctly tracks information.

17The calculus of Vassena et al. [14] is not intended to be a practical
programming model.

REFERENCES

[1] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM
Transactions on Programming Languages and Systems, vol. 25, no. 1,
pp. 117–158, 2003.

[2] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, “Jif:
Java information flow,” 2001–2016, software release. Located at http:
//www.cs.cornell.edu/jif.

[3] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible dynamic
information flow control in Haskell,” in Proceedings of ACM Symposium
on Haskell, 2011, pp. 95–106.

[4] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: Tracking
information flow in JavaScript and its APIs,” in Proceedings of ACM
Symposium on Applied Computing, 2014, pp. 1663–1671.

[5] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in Proceedings of ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, 2009, pp. 113–124.

[6] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo, “IFC
inside: Retrofitting languages with dynamic information flow control,”
in Proceedings of International Conference on Principles of Security
and Trust, 2015, pp. 11–31.

[7] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing static and dy-
namic typing for information-flow control in Haskell,” in Proceedings of
ACM SIGPLAN International Conference on Functional Programming,
2015, pp. 289–301.

[8] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell,
and A. Russo, “Hails: Protecting data privacy in untrusted web appli-
cations,” in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation, 2012, pp. 47–60.

[9] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and
D. Mazières, “Protecting users by confining JavaScript with COWL,” in
Proceedings of USENIX Conference on Operating Systems Design and
Implementation, 2014, pp. 131–146.

[10] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical data protection for emerging IoT ap-
plication frameworks,” in Proceedings of USENIX Security Symposium,
2016, pp. 531–548.

[11] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima,
S. Kiyomoto, and Y. Miyake, “Run-time enforcement of information-
flow properties on Android,” in Proceedings of European Symposium
on Research in Computer Security, 2013, pp. 775–792.

[12] A. Nadkarni, B. Andow, W. Enck, and S. Jha, “Practical DIFC en-
forcement on Android,” in Proceedings of USENIX Security Symposium,
2016, pp. 1119–1136.

[13] V. Rajani and D. Garg, “Types for information flow control: Labeling
granularity and semantic models,” in Proceedings of IEEE Symposium
on Computer Security Foundations, 2018, pp. 233–246.

[14] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan, “From fine- to
coarse-grained dynamic information flow control and back,” Proceedings
of the ACM on Programming Languages, vol. 3, no. POPL, pp. 76:1–
76:31, Jan. 2019.

[15] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Maziéres,
“Addressing covert termination and timing channels in concurrent infor-
mation flow systems,” in Proceedings of ACM SIGPLAN International
Conference on Functional Programming, 2012, pp. 201–214.

[16] P. Buiras, D. Stefan, and A. Russo, “On dynamic flow-sensitive floating-
label systems,” in Proceedings of IEEE Computer Security Foundations
Symposium, 2014, pp. 65–79.

[17] T. Hamann, M. Herda, H. Mantel, M. Mohr, D. Schneider, and M. Tasch,
“A uniform information-flow security benchmark suite for source code
and bytecode,” in Proceedings of Nordic Conference on Secure IT
Systems, 2018, pp. 437–453.

[18] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[19] D. Stefan, D. Mazières, J. C. Mitchell, and A. Russo, “Flexible dynamic
information flow control in the presence of exceptions,” Journal of
Functional Programming, vol. 27, 2017.

[20] G. M. Bierman, M. Parkinson, and A. Pitts, “MJ: An imperative core
calculus for Java and Java with effects,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-563, April 2003.

[21] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proceedings of IEEE Symposium on Security and Privacy, 1982, pp.
11–20.

[22] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All
your IFCException are belong to us,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE
Computer Society, 2013, pp. 3–17.

[23] P. Shroff, S. F. Smith, and M. Thober, “Dynamic dependency monitoring
to secure information flow,” in Proceedings of the 20th IEEE Computer
Security Foundations Symposium. IEEE Computer Society, 2007, pp.
203–217.

[24] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of
Java source code,” Software: Practice and Experience, vol. 46, no. 9,
pp. 1155–1179, 2016.

[25] J. Graf, M. Hecker, and M. Mohr, “Using JOANA for information flow
control in Java programs - a practical guide,” in Proceedings of Working
Conference on Programming Languages, 2013, pp. 123–138.

[26] A. Banerjee and D. A. Naumann, “Stack-based access control and secure
information flow,” Journal of functional programming, vol. 15, no. 2,
pp. 131–177, 2005.

[27] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for information
flow in object-oriented programs,” in Proceedings of ACM Symposium
on Principles of Programming Languages, 2006, pp. 91–102.

[28] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel, “Lam-
inar: Practical fine-grained decentralized information flow control,” in
Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2009, pp. 63–74.

[29] R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and
M. Mohr, “A hybrid approach for proving noninterference of Java
programs,” in Proceedings of IEEE Computer Security Foundations
Symposium, 2015, pp. 305–319.

[30] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” International Journal of Information Security, vol. 8, no. 6, pp.
399–422, 2009.

[31] G. Barthe, D. Pichardie, and T. Rezk, “A certified lightweight non-
interference Java bytecode verifier,” in Proceedings of European Sym-
posium on Programming, 2007, pp. 125–140.

[32] W. Cheng, D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov, “Abstractions for usable information
flow control in Aeolus,” in Proceedings of USENIX Annual Technical
Conference, 2012, pp. 139–151.

[33] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and event
processes in the Asbestos operating system,” in Proceedings of ACM
Symposium on Operating Systems Principles, 2005, pp. 17–30.

[34] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard OS abstractions,”
in Proceedings of ACM SIGOPS Symposium on Operating Systems
Principles, 2007, pp. 321–334.

http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

TABLE III
CO-INFLOW ANNOTATIONS THAT ADDRESS FALSE POSITIVE OF IFSPEC

BENCHMARKING RESULTS

Annotation Test Cases (26)
Inserting
raiseFieldLabel

Aliasing-InterProcedural-secure
Aliasing-Simple-secure
ScenarioBanking-Secure
Webstore3
Static-Initializers-HighAccess-secure
SecuriBench-Aliasing3
SecuriBench-Arrays3-secure
SecuriBench-Basic17-secures
SecuriBench-Basic29-secure
SecuriBench-Collections10-secure
SecuriBench-Collections2-secure
SecuriBench-Datastructures2-secure
SecuriBench-Inter12-secure

Inserting toLabeled
and/or refactoring meth-
ods

Deepalias2
Webstore
HighConditionalIncrementalLeak-
secure
IFLoop
ScenarioPasswordSecure
ImplicitListSizeNoLeak
IFMethodContract2
ObjectSensLeak
ReviewerAnonymity-NoLeak
ExceptionalControlFlow1-secure
SecuriBench-Basic30-secure
SecuriBench-Datastructures1-secure
SecuriBench-Factories3-secure

[35] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in HiStar,” in Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementation, 2006, pp.
263–278.

[36] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing distributed
systems with information flow control,” in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation.
Berkeley, CA: USENIX Association, 2008, pp. 293–308.

[37] M. V. Pedersen and S. Chong, “Programming with flow-limited au-
thorization: Coarser is better,” in 4th IEEE European Symposium on
Security and Privacy. Piscataway, NJ, USA: IEEE Press, Jun. 2019.

[38] Y. Lu and C. Zhang, “Nontransitive security types for coarse-grained
information flow control,” in Proceedings of 33rd IEEE Symposium on
Computer Security Foundations, 2020, pp. 199–213.

[39] V. Rajani, I. Bastys, W. Rafnsson, and D. Garg, “Type systems for
information flow control: the question of granularity,” ACM SIGLOG
News, vol. 4, no. 1, pp. 6–21, 2017.

APPENDIX A
IFSPEC BENCHMARKING RESULTS

Detailed results are shown in Tables III and IV.

APPENDIX B
WELL-FORMEDNESS OF CONFIGURATIONS

Judgment CT ` H : ok ensures the heap is well-formed, i.e.,
(a) objects in a heap are correctly addressed: they are pointing
to objects whose class definitions are valid; (b) class names
mentioned in the heap are in the class table; and (c) all fields
in every heap object are valid: the value of a field is either a
valid object reference or null.

TABLE IV
FALSE POSITIVE OF IFSPEC BENCHMARKING RESULTS THAT CANNOT BE

ADDRESSED BY CO-INFLOW ANNOTATIONS

Causes of FP Test Cases (21)
A method reads sensitive
data, but results do not de-
pend on the data

Aliasing-ControlFlow-secure
simpleConditionalAssignmentEqual
simpleErasureByConditionalChecks
BooleanOperations-secure
IFMethodContract
Polynomial
ExceptionalControlFlow2-secure
LostInCast

Heterogeneously label ArrayIndexSensitivity-secure
SecuriBench-Arrays10-secure
SecuriBench-Arrays2-secure
SecuriBench-Arrays5
SecuriBench-Arrays8-secure
SecuriBench-Collections13-secure
SecuriBench-Collections6-secure
SecuriBench-Collections7-secure
SecuriBench-Datastructures4
SecuriBench-Session2-secure

Sensitive data overriden by
non-sensitive data

SecuriBench-Sanitizers3
SecuriBench-StrongUpdates3

Thread-local data. SecuriBench-StrongUpdates5

Judgment CT ,H ` θ : ok ensures all variables map to valid
values; ` e : ok, ` κ : ok, and ` ρ : ok respectively en-
sure expressions, continuations, and continuation stacks have
correct syntax; CT ,H ` (e, ρ, pc, θ) : ok ensures that every
component of the container is well-formed; CT ` 〈∆,H〉 : ok
ensures that every container in stack ∆ is well-formed.

APPENDIX C
NON-INTERFERENCE PROOF

Definitions of low equivalence are shown in Figure 10.

To prove TINI, we need a few lemmas proving low equiva-
lence is preserved under different combinations of reduction
behaviours. Lemmas 1, 2, 3, 4 shows these combinations.

LEMMA 1: L-L PRESERVES ≈L . If Σ1.pc v L, Σ2.pc v L,
CT ` Σ1 → Σ′

1, CT ` Σ2 → Σ′
2, and Σ1 ≈φL Σ2, then exists

φ′, Σ′
1 ≈

φ′

L Σ′
2.

LEMMA 2: H-H2H PRESERVES ≈L . If Σ1.pc 6v L, Σ2.pc 6v
L, CT ` Σ1 → Σ′

1, Σ′
1.pc 6v L, and Σ1 ≈φL Σ2, then exists

φ′, Σ′
1 ≈

φ′

L Σ2.

LEMMA 3: H-H2H PRESERVES ≈L . If Σ1.pc 6v L, Σ2.pc 6v
L, CT ` Σ2 → Σ′

2, Σ′
2.pc 6v L, and Σ1 ≈φL Σ2, then exists

φ′, Σ1 ≈φ
′

L Σ′
2.

LEMMA 4: H2L-H2L PRESERVES≈L . If Σ1.pc 6v L, Σ2.pc 6v
L, CT ` Σ1 → Σ′

1, CT ` Σ2 → Σ′
2, Σ′

1.pc v L, Σ′
2.pc v L,

and Σ1 ≈φL Σ2, then exists φ′ so that Σ′
1 ≈

φ′

L Σ′
2.

PROOF. All four lemmas can be proven using case analysis
on the reduction rules →.

LEMMA 5: LT-LT . If Σ1 is terminated, Σ1.pc v L, and
Σ1 ≈φL Σ2, then Σ2 is terminated.

PROOF. By definition of low equivalence of configurations.

ADDRESSES-H ≈L
H1(ς1) = 〈cn,F1, `f , `o〉
H2(ς2) = 〈cn,F2, `f , `o〉
`o v L `f 6v L
φ[ς1,H1 ≈φL ς2,H2]

ADDRESSES-L ≈L
H1(ς1) = 〈cn,F1, `f , `o〉 H2(ς2) = 〈cn,F2, `f , `o〉 `o v L `f v L
∀f . (F1(f) = null ⇐⇒ F2(f) = null) ∨ (F1(f) = ςf1 ∧ F2(f) = ςf2
∧H1(ςf1) = 〈cnf1,Ff1 , `f f1 , `of1〉 ∧H2(ςf2) = 〈cnf2,Ff2 , `f f2 , `of2〉
∧(φ(ςf1) = ςf2 ∧ `of1 v L ∧ `of2 v L ∧`of1 = `of2 ∧ cnf1 = cnf2)

∨ (`of1 6v L ∧ `of2 6v L))

φ[ς1,H1 ≈φL ς2,H2]

HEAP ≈L
∀ς1 ς2.[φ(ς1) = ς2 =⇒ φ[ς1,H1 ≈φL ς2,H2]]

∧ ∀ς, ς 6∈ dom(H1) =⇒ ς 6∈ dom(φ) ∧ ∀ς, ς 6∈ dom(H2) =⇒ ς 6∈ dom(φ−1)
∧ ∀ς.H1(ς) = 〈cn,F, `f , `o〉 ∧ `o 6v L =⇒ ς 6∈ dom(φ) ∧ ∀ς.H2(ς) = 〈cn,F, `f , `o〉 ∧ `o 6v L =⇒ ς 6∈ dom(φ−1)

H1 ≈φL H2

EXPR≈L-OBJECT-L
H1(ς1) = 〈cn,F1, `f , `o〉
H2(ς2) = 〈cn,F2, `f , `o〉

`o v L
φ(ς1) = ς2

〈ς1,H1〉 ≈φL 〈ς2,H2〉

EXPR≈L-OBJECT-H
H1(ς1) = 〈cn,F1, `f 1, `o1〉
H2(ς2) = 〈cn,F2, `f 2, `o2〉

`o1 6v L
`o2 6v L

〈ς1,H1〉 ≈φL 〈ς2,H2〉

EXPR≈L-LABELED-L
〈e1,H1〉 ≈φL 〈e2,H2〉 ` v L

〈e`1,H1〉 ≈φL 〈e
`
2,H2〉

EXPR≈L-LABELED-H
` 6v L

〈e`1,H1〉 ≈φL 〈e
`
2,H2〉

EXPR≈L-OPAQUELABELED-L
〈e1,H1〉 ≈φL 〈e2,H2〉 ` v L
〈e[`]1 ,H1〉 ≈φL 〈e

[`]
2 ,H2〉

EXPR≈L-OPAQUELABELED-H
`1 6v L `2 6v L

〈e[`1]1 ,H1〉 ≈φL 〈e
[`2]
2 ,H2〉

VARIABLE STATE ≈L
∀x.θ1(x) = v1 ∧ θ2(x) = v2 ∧ 〈v1,H1〉 ≈φL 〈v1,H2〉

〈θ1,H1〉 ≈φL 〈θ2,H2〉

EXPRESSION STACK ≈L
〈e1,H1〉 ≈φL 〈e2,H2〉
〈ρ1,H1〉 ≈φL 〈ρ2,H2〉

〈e1 :: ρ1,H1〉 ≈φL 〈e2 :: ρ2,H2〉

CONTAINER ≈L
pc v L 〈e1,H1〉 ≈φL 〈e2,H2〉

〈ρ1,H1〉 ≈φL 〈ρ2,H2〉
〈θ1,H1〉 ≈φL 〈θ2,H2〉

〈(e1, ρ1, pc, θ1),H1〉 ≈φL 〈(e2, ρ2, pc, θ2),H2〉

CONFIGURATION-EMPTY
H1 ≈φL H2

〈[],H1〉 ≈φL 〈[],H2〉

CONFIGURATION-L
δ1.pc v L δ2.pc v L H1 ≈φL H2

〈δ1,H1〉 ≈φL 〈δ2,H2〉 〈∆1,H1〉 ≈φL 〈∆2,H2〉
〈δ1 :: ∆1,H1〉 ≈φL 〈δ2 :: ∆2,H2〉

CONFIGURATION-H
∆1.pc v L ∆2.pc v L ∀i(1 ≤ i ≤ m), δi.pc 6v L
∀j(1 ≤ j ≤ n), δ′j .pc 6v L 〈∆1,H1〉 ≈φL 〈∆2,H2〉
〈δ1 . . . δm :: ∆1,H1〉 ≈φL 〈δ

′
1 . . . δ

′
n :: ∆2,H2〉

Fig. 10. Definitions of low equivalence of expressions, continuations, containers, and configurations

LEMMA 6: HT-H2H. If Σ1 is terminated, Σ1.pc 6v L,
Σ2.pc 6v L, Σ1 ≈φL Σ2 and CT ` Σ2 → Σ′

2, then Σ′
2.pc 6v L.

PROOF. By case analysis on the reduction rules → and the
definition of low equivalence.

Now we prove TINI.

PROOF. By strong induction on the number of total steps that
two executions take to reach final configurations, and applying
lemmas 1, 2, 3, 4, 5, and 6.

APPENDIX D
TYPE SYSTEM

The judgement ` CT : ok ensures that all loaded classes are
well-typed, i.e., all method declarations in a class are well
typed: it’s body’s type matches its declared return type.

Figure 11 shows remaining typing judgements for expressions.
Some of these rules use auxiliary functions defined in Defini-
tion 1. Figure 12 shows typing judgements of continuations.

Figure 13 shows typing judgements of a container, container
stack, and configuration.

DEFINITION 1: AUXILIARY FUNCTIONS.

lookup_md(CT , cn,m)
def
= τr m(τ x){e}

where CT (cn) = class cn fd md and τr m(τ x){e} ∈ md

lookup_fd(CT , cn, f)
def
= cn ′ f

where CT (cn) = class cn fd md and cn ′ f ∈ fd

fields(CT , cn)
def
= {f | cn ′ f ∈ fd}

where CT (cn) = class cn fd md

APPENDIX E
OPERATIONAL SEMANTICS

Remaining reduction rules are presented in Figure 14.

COMPARE
CT ,Γ,H ` e1 : cn
CT ,Γ,H ` e2 : cn

CT ,Γ,H ` e1 == e2 : bool

FIELDREAD
CT ,Γ,H ` e : cn

lookup_fd(CT , cn, f) = cn ′ f ;

CT ,Γ,H ` e.f : cn ′

METHODCALL
CT ,Γ,H ` e : cn CT ,Γ,H ` e1 : τ

lookup_md(CT , cn,m) = τ ′ m(τ a){ebody}
CT ,Γ,H ` e.m(e1) : τ ′

NEWEXP
CT (cn) = class cn fd md

CT ,Γ,H ` new cn() : cn

NULL

CT ,Γ,H ` null : cn

BOOLEAN

CT ,Γ,H ` true/false : bool

VAR
Γ(x) = τ

CT ,Γ,H ` x : τ

ASSIGNMENT
Γ(x) = τ

CT ,Γ,H ` e : τ

CT ,Γ,H ` x = e : τ

IF
CT ,Γ,H ` e : bool

CT ,Γ,H ` e1 : τ CT ,Γ,H ` e2 : τ

CT ,Γ,H ` if e then e1 else e2 : τ

SEQUENCE
CT ,Γ,H ` e1 : τ
CT ,Γ,H ` e2 : τ ′

CT ,Γ,H ` e1 ; e2 : τ ′

OBJID
H(ς) = 〈cn,F, `f , `o〉

CT (cn) = class cn fd md

CT ,Γ,H ` ς : cn

LABEL

CT ,Γ,H ` ` : Label

CONTEXTLABEL

CT ,Γ,H ` getContextLabel() : Label

LABELDATA
CT ,Γ,H ` e : τ CT ,Γ,H ` ` : Label

CT ,Γ,H ` labelData(e, `) : Labeled τ

Fig. 11. Typing rules for expressions

COMPARE.LEFT.HOLE
CT ,Γ,H ` e : cn

CT ,Γ,H ` • == e : cn → bool

COMPARE.RIGHT.HOLE
CT ,Γ,H ` e : cn

CT ,Γ,H ` e == • : cn → bool

FIELDREAD.OBJ.HOLE
lookup_fd(CT , cn, f) = cn ′ f

CT ,Γ,H ` •.f : cn → τ

METHODCALL.OBJ.HOLE
CT ,Γ,H ` x : τ lookup_md(CT , cn,m) = τ ′ m(τ a){ebody}

CT ,Γ,H ` •.m(x) : cn → τ ′

LABELDATA.HOLE

CT ,Γ,H ` labelData(•, `) : τ → Labeled τ

METHODCALL.ARG.HOLE
CT ,Γ,H ` e : cn lookup_md(CT , cn,m) = τ ′ m(τ a){ebody}

CT ,Γ,H ` e.m(•) : τ → τ ′

UNLABEL.HOLE

CT ,Γ,H ` unlabel(•) : Labeled τ → τ

LABELOF.HOLE

CT ,Γ,H ` labelOf(•) : Labeled τ → Label

FIELDLABELOF.HOLE

CT ,Γ,H ` fieldLabelOf(•) : cn → Label

ASSIGNMENT.HOLE
Γ(x) = τ

CT ,Γ,H ` x = • : τ → τ

SEQUENCE.HOLE
CT ,Γ,H ` e : τ

CT ,Γ,H ` • ; e : τ ′ → τ

FIELDWRITE.OBJ.HOLE
lookup_fd(CT , cn, f) = cn ′ f CT ,Γ,H ` e : cn ′

CT ,Γ,H ` •.f = e : cn → cn ′

FIELDWRITE.VAL.HOLE
lookup_fd(CT , cn, f) = cn ′ f CT ,Γ,H ` e : cn

CT ,Γ,H ` e.f = • : cn ′ → cn ′

IF.HOLE
CT ,Γ,H ` e1 : τ CT ,Γ,H ` e2 : τ

CT ,Γ,H ` if • then e1 else e2 : bool→ τ

Fig. 12. Typing rules for continuations

VARIABLE STATE
∀x τ,Γ(x) = τ θ(x) = v

CT ,Γ,H ` v : τ

CT ,Γ,H ` θ : ok

CONTINUATION-STACK
CT ,Γ,H ` κ : τ → τ ′

CT ,Γ,H ` ρ : τ ′ → τ ′′

CT ,Γ,H ` (κ :: ρ) : τ → τ ′′

CONTAINER
e is free of assignment CT ,Γ,H ` e : τ
CT ,Γ,H ` θ : ok CT ,Γ,H ` ρ : τ → τ ′

CT ,Γ,H ` (e, ρ, `, θ) : τ → τ ′

STACK-NIL

CT ,Γ,H ` [] : τ → τ

CONTAINER-STACK
CT ,Γ,H ` δ : τ → τ ′

CT ,Γ,H ` ∆ : τ ′ → τ ′′

CT ,Γ,H ` δ :: ∆ : τ → τ ′′

CONFIGURATION
CT ,Γ,H ` δ : τ → τ ′

CT ,Γ,H ` ∆ : τ ′ → τ ′′ ` CT : ok

CT ,Γ ` 〈H, δ :: ∆〉 : τ → τ ′′

Fig. 13. Typing rules for continuation stack, container, container stack, and configuration

E-VAR
v = θ(x)

δ = (x , ρ, pc, θ) δ′ = (v , ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-CTX-RETURN
δ = (v , κ :: ρ, pc, θ)
δ′ = (κ[v], ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-COMP-CTX1
δ = (e1 == e2, ρ, pc, θ)

δ′ = (e1, • == e2 :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-COMP-CTX2
δ = (v == e2, ρ, pc, θ)

δ′ = (e2, v == • :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDREAD-CTX
δ = (e.f , ρ, pc, θ)

δ′ = (e, •.f :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDREAD-EXCEPTION
δ = (v .f , ρ, pc, θ)

(null, `) = openOpaque(v)

CT ` 〈δ :: ∆;H〉 → Exception

E-METHODCALL-CTX1
δ = (e1.m(e2), ρ, pc, θ)

δ′ = (e1, •.m(e2) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-METHODCALL-CTX2
δ = (v .m(e2), ρ, pc, θ)

δ′ = (e2, v .m(•) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-METHODCALL-EXCEPTION
δ = (v .m(v ′), ρ, pc, θ)

(null, `) = openOpaque(v)

CT ` 〈δ :: ∆;H〉 → Exception

E-LABELDATA-CTX-VAL
δ = (labelData(e, `), ρ, pc, θ)

δ′ = (e,labelData(•, `) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-LABELDATA-EXCEPTION
δ = (labelData(v , `v), ρ, pc, θ) pc 6v `v

CT ` 〈δ :: ∆;H〉 → Exception

E-UNLABEL-CTX
δ = (unlabel(e), ρ, pc, θ)

δ′ = (e,unlabel(•) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-LABELOF-CTX
δ = (labelOf(e), ρ, pc, θ)

δ′ = (e,labelOf(•) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-RAISEFIELDLABEL-CTX-OBJ
δ = (raiseFieldLabel(e, e′), ρ, pc, θ)

δ′ = (e,raiseFieldLabel(•, e′) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-RAISEFIELDLABEL-CTX-LABEL
δ = (raiseFieldLabel(v , e′), ρ, pc, θ)

δ′ = (e′,raiseFieldLabel(v , •) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-RAISEFIELDLABEL-EXCEPTION
δ = (raiseFieldLabel(v , v ′), ρ, pc, θ)

(null, `′) = openOpaque(v)

CT ` 〈δ :: ∆;H〉 → Exception

E-RAISEFIELDLABEL-INFORMATIONLEAK
δ = (raiseFieldLabel(vo, v`), ρ, pc, θ)

(ς, `) = openOpaque(vo)
(`f
′, `′) = openOpaque(v`)
H(ς) = 〈cn,F, `f , `o〉

pc t ` t `′ 6v `f ∨ `f v `f ′

CT ` 〈δ :: ∆;H〉 → Exception

E-FIELDWRITE-INFORMATIONLEAK
δ = (vo.f = v , ρ, pc, θ)

(ς, `r) = openOpaque(vo)
(ς ′, `′r) = openOpaque(v)
H(ς) = 〈cn,F, `f , `o〉
(pc t `r t `′r) 6v `f

CT ` 〈δ :: ∆;H〉 → Exception

E-TOLABELED-CTX
δ = (toLabeled(e, e1), ρ, pc, θ)

e contains no assignments
δ = (e1,toLabeled(e, •) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-ASSIGNMENT-CTX
δ = (x = e, ρ, pc, θ)

δ′ = (e, x = • :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-VARASSIGN
δ = (x = v , ρ, pc, θ)

δ′ = (v , ρ, pc, θ[x 7→ v])

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDWRITE-CTX1
δ = (e1.f = e2, ρ, pc, θ)

δ′ = (e1, •.f = e2 :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDWRITE-CTX2
δ = (v .f = e2, ρ, pc, θ)

δ′ = (e2, v .f = • :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-FIELDWRITE-EXCEPTION
δ = (v .f = v ′, ρ, pc, θ)

(null, `) = openOpaque(v)

CT ` 〈δ :: ∆;H〉 → Exception

E-FIELDLABELOF-CTX
δ = (fieldLabelOf(e), ρ, pc, θ)

δ = (e,fieldLabelOf(•) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-IF-CTX
δ = (if e then e1 else e2, ρ, pc, θ)

δ′ = (e,if • then e1 else e2 :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-SEQ-CTX
δ = (e1 ; e2, ρ, pc, θ)

δ′ = (e1, (• ; e2) :: ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-SEQ
δ = (v ; e2, ρ, pc, θ)
δ′ = (e2, ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-COMP
δ = (v ′1 == v ′2, ρ, pc, θ) (v1, `1) = openOpaque(v ′1) (v2, `2) = openOpaque(v ′2) `o1 = getObjL(v1,H)

`o2 = getObjL(v2,H) pc′ = pc t `1 t `2 t `o1 t `o2 v =

{
true if v1 = v2
false if v1 6= v2

δ′ = (v , ρ, pc′, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉

E-GETCONTEXTLABEL
δ = (getContextLabel(), ρ, pc, θ) δ′ = (pc, ρ, pc, θ)

CT ` 〈δ :: ∆,H〉 → 〈δ′ :: ∆,H〉
getObjL(v ,H)

def
=

 `o if ∃ς, v = ς
∧H(ς) = 〈cn,F, `f , `o〉

⊥ otherwise

Fig. 14. Remaining Operational Semantics Rules

	Introduction
	Co-Inflow Overview
	Context labels and field labels
	Labeled Values
	Co-Inflow

	Language Model
	Syntax
	Operational Semantics
	Type system

	Security Guarantee
	From CIFC to Co-Inflow
	Implementation
	Evaluation
	Human Resources Application
	Health Records Application
	Roller Application
	IFSpec benchmark
	Performance
	Developer effort

	Related Work
	Conclusion
	References
	Appendix A: IFSpec Benchmarking Results
	Appendix B: Well-formedness of Configurations
	Appendix C: Non-interference proof
	Appendix D: Type System
	Appendix E: Operational Semantics

