
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

A Safety Condition Monitoring System

John Knight
1
, Jonathan Rowanhill

2
, Jian Xiang

1

1 University Of Virginia, Department of Computer Science, Charlottesville, USA

{jck, jx5c}@virginia.edu
2 Dependable Computing LLC, Charlottesville, USA

jonathan.rowanhill@dependablecomputing.com

Abstract. In any safety argument, belief in the top-level goal depends upon a

variety of assumptions that derive from the system development process, the

operating context, and the system itself. If an assumption is false or becomes

false at any point during the lifecycle, the rationale for belief in the safety goal

might be invalidated and the safety of the associated system compromised. As-

surance that assumptions actually hold when they are supposed to is not guaran-

teed, and so monitoring of assumptions might be required. In this paper, we de-

scribe the Safety Condition Monitoring System, a system that permits compre-

hensive yet flexible monitoring of assumptions throughout the entire lifecycle

together with an alert infrastructure that allows tailored responses to violations

of assumptions. An emphasis of the paper is the approach used to run-time

monitoring of assumptions derived from software where the software cannot be

easily changed.

Keywords: safety argument . safety assumption . safety condition monitoring

1 Introduction

The Comprehensive Lifecycle for Assuring System Safety (CLASS) is a safety-

engineering system lifecycle that extends the Assurance Based Development software

concept [1][2] to the system level. CLASS encompasses system development, ap-

proval, maintenance, and decommissioning. An important element of CLASS is a

system for monitoring safety assumptions. In this paper, we present the overall design

of the monitoring system together with details of one complex part of the system,

sensor technology for monitoring run-time assumptions in software where the soft-

ware cannot be easily changed.

The safety analysis that is undertaken when developing a new, safety-critical sys-

tem is predictive. The goal is to provide an estimate of the residual risk that remains

as a result of the system’s design, the planned operational context, and the planned

mission profiles. In classical safety analysis, a variety of techniques are used to pro-

vide an estimate of the residual risk and associated variance. In deployment decisions

for safety-critical systems the decision is based, in part, on assessment of whether the

estimated residual risk value and variance exceed that which is determined to be ac-

ceptable.

 2

Inevitably, all safety analyses depend upon assumptions or expectations about: (a)

the system being analyzed, (b) the way that the system was built and approved, and

(c) the way that the system will be used. Such assumptions are made about topics

such as:

 Conduct and reporting of development processes and analysis.

 Details of the context within which the system will operate, including ranges of

input variables.

 Failure rates and failure semantics of physical and software components.

 Performance of components in terms of physical capabilities such as strengths of

elements, wear resistance, and corrosion resistance.

 Performance of components in terms of computing capabilities such as computing

rates, data transmission rates, and data generation rates.

 Aspects of human performance in areas such as operator fault rates and response

times.

 Maintenance timing and expected application of maintenance procedures.

Assumptions about topics such as these are often stated explicitly in safety arguments

or are implied by statements such as operational limitations. Irrespective of the

source, all assumptions become part of the rationale for belief in a safety goal. In the

event that an assumption is false or becomes false once the system is deployed, the

rationale for belief in a goal within a safety argument might be invalidated and the

safety of the associated system compromised.

In summary, the effectiveness of any safety-engineering activity, and in particular

the effectiveness of CLASS, relies upon two conditions:

 The detailed lifecycle (development, approval, maintenance, and decommission-

ing) activities are conducted as defined.

 The assumptions used in the safety analysis of the subject system (and therefore

the assumptions contained both explicitly and implicitly in the system safety case)

are true throughout the lifecycle of the subject system.

These two conditions imply predicates on the activities and state of a system through-

out the lifecycle. These predicates must maintain their assumed values, and the role of

monitoring is to check the values of the predicates. For purposes of discussion, we

refer to these predicates as lifecycle invariants or simply as invariants.

Adherence to these conditions cannot be dictated, and so a fundamental aspect of

CLASS is to support selective monitoring of both conditions. More specifically, mon-

itoring in CLASS plays two roles:

 Process Monitoring. Process monitoring supports monitoring of adherence to the

processes and procedures employed throughout the lifecycle.

 State Monitoring. State monitoring supports monitoring of adherence to the system

state assumptions made about the system artifacts in the lifecycle analysis.

The application of monitoring has to be selective in order to control overhead, and has

to be adjustable over time to control measurement granularity. System safety analysis

 3

and observation of operation will determine which process and state elements are

monitored, when, and with what frequency.

The CLASS Safety Condition Monitoring System (SCMS) is the mechanism that

implements the necessary monitoring. The SCMS is identical for all lifecycle invari-

ants. Only the platform, the sensors, and the alerts that are used are different.

Fig. 1. CLASS Safety Condition Monitoring System

It is important to note that the monitoring system does not monitor hazardous states

or violations of safety requirements. The requirements for the monitoring system

derive from the creation and content of both the process used to create the system and

the safety argument for the system, not the safety requirements of the system. The

system monitors the conditions upon which the safety argument depends so as to fa-

cilitate continuous justified belief in the safety claim for the target system.

The overall structure of the monitoring system is shown in Figure 1.

2 Monitoring System Design

Frequently, development environments for safety-critical systems and the systems

themselves are distributed, consisting of a number of components operating inde-

pendently. Each such component often implements more than one service. Such sys-

tem architectures lead to the need to: (a) monitor a number of different system ele-

ments, and (b) to integrate the results of analyses in order to ascertain the state of

complex conditions.

The monitoring system accommodates this system architecture by operating as a

distributed system with the various elements of the system communicating in a man-

ner determined by the structure and details of the invariants being monitored. Thus,

for example, the SCMS could be monitoring invariants derived from maintenance

 4

requirements and also supplying maintenance measurements to state invariants that

are defined in terms of expected maintenance activities.

As an example, the distributed structure of an SCMS and how the SCMS might be

integrated into a simple avionics architecture is shown in Figure 2. In this example:

(a) sensors monitor a variety of applications, (b) predicates local to each application

are evaluated, (c) predicates distributed across the applications are evaluated, and (d)

data needed elsewhere in the SCMS (other instances) is transmitted as necessary.

Fig. 2. Example CLASS monitoring system in a hypothetical avionics system.

The design of the monitoring system is shown Figure 3. The design assumes that all

requisite sensors have been deployed through the relevant environments with which

the system has to operate. During development, these environments would include,

minimally, asset libraries used in the system’s development, the subject system’s

design and analysis documentation, the process and workflow definitions, and the

various assets in use for development. After deployment, these environments would

include the system’s operational, maintenance, and decommissioning environments.

2.1 Event Bus

Central to the design of the monitoring system is the Event Bus (see lower center of

Figure 3). The Event Bus accepts event notifications from any part of the monitoring

system and delivers those notifications to any destination within the system. The pur-

pose of the Event Bus is to provide a comprehensive, asynchronous notification

mechanism. Thus changes sensed within one part of the monitoring system that re-

quire action elsewhere result in event generation, transmission, delivery and pro-

cessing.

 5

Fig. 3. The monitoring system design

2.2 Monitoring Data Repository

Sensor data will arrive at intervals determined by the monitoring system but no poll-

ing of sensors is assumed. Separate scheduling and timing control is assumed to be

provided either by the host operating system or the sensors themselves.

Sensor data is placed into the Monitoring Data Repository as the data becomes

available. As appropriate, events are generated by agents within the data repository to

signal the availability of sensor data.

Clocks within the system are treated as sensors so that logical timing information is

maintained within the Monitoring Data Repository. The passage of time that triggers

sensing is made known to the remainder of the monitoring system as necessary by the

generation of events.

2.3 State Predicates

The state predicates codify the safety conditions, and the monitoring system forms all

predicates so that the assumed value is always true. Thus, evaluation of a state predi-

cate to false indicates that a safety condition has been violated. State predicates are

documented using the standard operators from predicate and propositional logic with

data values from the Monitoring Data Repository, including time.

As an example, consider the development of a UAS that is to be operated within

the NAS. In the safety case for the UAS operation within the NAS, an invariant might

be required that the altitude of the UAS would not exceed FL 300. That assumption

might be encoded in a state predicate from an original invariant as:

altitude <= 300

 6

Since the UAS’ altitude is available from onboard sensors, checking this invariant

merely requires acquisition of the current altitude and comparing that altitude with the

constant 300.

State predicates have to be evaluated when suitable data is available for their eval-

uation and when evaluation is meaningful. A predicate referred to as a trigger con-

trols each state predicate (see Figure 3). A trigger encodes details such as: (a) arrival

of relevant data in the data repository, (b) arrival of time for evaluation, and (c) sys-

tem state as determined by other state predicates requiring evaluation of the subject

state predicate.

The evaluation of a state predicate to false causes the predicate to generate a token

that is transmitted to the state recognizers.

2.4 State Recognizers

The state recognizers encode the alert semantics that the system stakeholders require

for violations of any of the system’s invariants. The state of interest is any sequence

of invariant violations that requires some action. Possible actions include:

 No action. There might be circumstances in which system stakeholders decide that

violation of an invariant does not impact the system’s safety.

 Indicate the violation to a system operator. Alerting an operator will allow hu-

man intervention should that be indicated for the invariant violation.

 Change monitoring parameters. Violation of an invariant might be best handled

by more extensive or more detailed monitoring of the state. Thus, an action that

might be required is adjustment of the parameters controlling a subset of the sen-

sors or adjustment of the trigger(s) for one or more state predicates.

 Modify the state of the system. A violation might be sufficiently serious that the

preferred response to a violation is to modify the development state or the operat-

ing state of the subject system, such as suspending development or shutting down

all or part of the system.

 Record details of the violation. The response to violation of an invariant might

depend upon prior violations. To accommodate such sequential actions, a neces-

sary action might be merely to record details of a violation so as to modify the ac-

tion taken on future violations of invariants.

To deal with the variety of actions that might be required from a state recognizer, the

state recognizers are designed as finite-state machines and the actions they must take

are defined with regular expressions. Inputs to the finite-state machines are the tokens

generated by the state predicates. Each token that is generated is supplied to the subset

of finite-state machines that have registered an interest in the type of token.

Every action arises from a transition in a finite-state machine and is implemented

as an event. Each action event is sent to the required destination.

An example of a simple finite-state machine of the type used in the monitoring sys-

tem is shown Figure 4. The example is for the state monitoring of a hypothetical UAS

that is constrained to operate below FL 300 and at speeds less than 200 knots. The

 7

safety argument’s validity depends upon the assumptions that these limits are respect-

ed. Systems analysis has determined that:

 A single violation of either assumption only warrants a warning to the UAS opera-

tor.

 Two violations during a single mission of the assumptions warrant a warning to the

UAS operator and the UAS range-safety officer.

 A third violation during a single mission requires that the UAS descend and slow

down under autonomous control.

Fig. 4. A monitoring system state recognizer example

The finite-state machine implements these policies. Changes of state of the machine

occur as a result of tokens that are generated by the state predicates. The state predi-

cates are defined in terms of the altitude and speed data supplied to the monitoring

system by sensors on the aircraft. The triggers for the state predicates are initiated by

events generated from the Monitoring Data Repository as new data arrives from the

UAS sensors.

3 Sensors

In all lifecycle phases, the necessary monitoring system sensors might have to meas-

ure a wide variety of signals with diverse characteristics, and respond to demands to

start sensing, stop sensing or change the sensing frequency. In this section, we sum-

marize the characteristics of sensors and examine one particularly challenging type of

sensor, that which arises in software systems that cannot be modified easily.

3.1 Sensor Characteristics

The sensors used by the monitoring system in any particular circumstance have to be

tailored to the specific application of interest and to the associated invariants. In gen-

eral, sensors have to cover both periodic and aperiodic measurement, and have to

handle a wide range of sampling frequencies, data types and data volumes. All sen-

sors operate with the same basic interface to the associated monitoring repository.

Process invariants are tied closely to:

 Process - the various processes used throughout the lifecycle. Processes must be

executed as expected if appropriate value is to be obtained.

 8

 Workflows - the workflows used by each process. Workflows have to be executed

by the expected entity (human, machine, or combination) and in the expected way.

 Reuse - the actions associated with use of the asset libraries, such as argument

pattern, process pattern, and software libraries. Reuse of assets must be based upon

appropriate selection and instantiation.

 Updates - updates to the asset libraries. If defects are detected in an asset after the

asset has been used, one or more revisions to the subject system’s artifacts might

be required.

Sensors for process monitoring are merged into the tools and resources used to man-

age the various process elements. Process templates are defined in the Business Pro-

cess Model and Notation 2 (BPMN2) [4]. BPMN2 is a graphical language that is easi-

ly read by humans and is executable on a wide range of common workflow engines.

BPMN2 processes consist of activities that must be performed by particular roles and

can involve humans or be automated. They follow partially ordered sequences and are

often separated by decision points that execute flow control. Process monitoring sen-

sors can be integrated relatively simply into BPMN2 specifications.

State monitoring requires sensors that capture data from the system artifacts and

could include state information about development activities, approval activities, op-

erational activities, maintenance activities and so on. Sensed data could be a record of

human action as observed by a computer system, details of component failures or

performance, calculated values within a software component, etc.

Many, perhaps most, state sensors will be implemented in software, and the sensor

implementation will need access to the state so that the requisite data can be captured.

As an example of state sensing, in the next section we discuss details of the monitor-

ing system’ approach to a particularly difficult type of state sensor, the state of soft-

ware that cannot be easily modified.

3.2 Sensors and Unmodifiable Software Systems

In general, a sensor that samples data from a software system necessitates the intro-

duction of additional software into the system, i.e., modifying the subject software.

Such a modification usually requires access to the subject software’s source code and

subsequent rebuilding of the system. Modifications of this type might not be desira-

ble, might be inconvenient, or might not be possible for several reasons including:

 Inaccessible source code. In some cases, the source code of an element of the

system software might not be accessible. The source code for reusable libraries

and software obtained from independent suppliers is frequently unavailable and

so required sensors have to be installed in a different way.

 Temporary requirement. A circumstance might arise in which monitoring an

element of the state for which no sensor exists becomes necessary. This situation

might arise if, through exceptional circumstances such as an emergency, concern

arises that the system might need to operate outside of the planned environment.

Introducing a sensing capability without having to modify the source code and

rebuild the software is highly desirable in such a case.

 9

 Change in data demand. Sensors would typically be installed as part of system

development, and sensing rates would be determined and set as part of the de-

sign. Unplanned changes in sensing parameters might arise if field observations

indicate the need. Again, modifying the sensing parameters such as the sampling

rate without modifying the source code is highly desirable.

We characterize these situations as needing to modify software that is not easily

modified. Though unusual, we expect such situations to arise, and the monitoring

system deals with the difficulties of this type using dynamic binary translation. In

effect, the binary version of the software is modified dynamically during execution to

effect the desired change without having to modify the source code. Assurance of

desired system properties is achieved by relying on formalism to a large extent.

Dynamic binary translation operates by executing the subject software in an appli-

cation virtual machine. The translator is an execution-time fetch-execute loop that

fetches a fragment of the binary program, examines and optionally modifies the frag-

ment, and then executes the fragment. For monitoring system sensing, this translator

can modify the binary by inserting sensing instructions into a fragment as part of the

fetch-execute loop. Modern dynamic binary translation systems add very little over-

head to the program. The monitoring system uses a specific system called Strata

[3]Error! Reference source not found.. Strata does not require adaptation for a par-

ticular application. Rather, Strata uses formal specifications of the desired changes to

machine instructions to generate sensing instructions.

Software invariants in safety arguments span a wide range of application semantic

levels and application timeframes. At the highest level of abstraction, invariants are

based upon quantities that are closely related to real-world entities such as aircraft

operating parameters related to flight dynamics. At the lowest level of abstraction,

invariants are based upon machine-level detail arising from the implementation.

For practical purposes, the software-state monitoring task can be divided into three

semantic levels corresponding to:

 The model level, i.e., the application specification level. Software at this level de-

rives from the application of tools such as MathWorks Simulink
®
 that synthesize

the associated high-level-language software.

 The source-code level, i.e., the level of the data structures and algorithms within

the application. Outside of synthesis, software at this level derives from custom

code developed by application engineers.

 The binary-code level, i.e., system implementation level. Software at this level

derives from libraries and possibly other reused assets.

From the perspective of sensor changes in software that is hard to modify, the model-

based-development level is the most complex of these semantic levels, and we discuss

the use of dynamic binary translation for that case and give an example of the process.

The sensing technique for model-based development is shown in Figure 5. High-

level-language source code is generated for the subject model by synthesis. The moni-

toring system supports models specified in Simulink
®
 running under Linux on Intel

X86 platforms. For Simulink
®
, the synthesis is provided by MathWorks tools that

generate C. The source code is compiled and linked to form the binary program.

 10

Fig. 5. Monitoring system sensing technique for model-based development.

For the monitoring system, the binary program is further processed by a utility

called the Stratafier that installs Strata in the binary program. The semantics of the

resulting program are unmodified although a modest overhead is introduced. Sepa-

rately: (a) the Simulink
®

model is processed to extract the details of the variables used

in the model, (b) the C code is processed to extract the variables used in the C pro-

gram, (c) the binary program is processed to determine the locations of variables in

the binary program, and (d) a variable model is built.

The variable model links the three sets of variables. The link between a Simulink
®

variable and the associated variable in C is derived from the naming convention that

Simulink
®
 uses in the generated code. The link between a variable in C and the asso-

ciated memory and instructions in the binary program is derived from the symbol

information placed in the binary file by the compiler.

The invariants are determined from the safety case arguments and contexts. The

execution-time actions that Strata takes to effect the necessary sensing (machine in-

struction insertion and modification) are defined by specifications derived from the

invariants and the variable model. These specifications are defined using Strata’s

translation specification infrastructure and are translated into Strata sprockets, low-

level commands that control Strata during execution.

3.3 An Example of Sensing in a Simulink
®

Model

To illustrate the ideas outlined in the previous section, we present an example based

on a hypothetical anti-lock braking system (ABS). In the example, we assume a re-

quirement has arisen for temporary sensing of the vehicle speed (variable Vehicle

 11

Speed in the model) after deployment and that installing the sensor using dynamic

binary translation is the preferred approach.

Fig. 6. Part of a hypothetical ABS defined using Simulink®.

Part of the Simulink
®
 model of the ABS is shown in Figure 6, and part of the C

code synthesized from the Simulink
®
 model that includes an assignment to the C vari-

able VehicleWithABS_B.Vs corresponding to the Simulink
®
 variable

VehicleSpeed is shown in Figure 7. The associated machine instructions are shown

in Figure 8. Based on a symbolic specification for the required sensing, Strata inserted

a branch to a predefined instruction sequence that transmitted the value of the register

holding the vehicle speed to the monitoring data repository.

Fig. 7. Part of the synthesized code for the hypothetical ABS.

 12

Inevitably, dynamic binary translation will disturb the timing characteristics of a

system and impact real-time performance. Various techniques can be used to mitigate

the effects of the timing disturbance including: (a) using models to predict worst-case

execution time (WCET) of monitored software given the WCET of the unmonitored

software, (b) selective monitoring for much of the system’s operating time could be

disabled thereby eliminating the disturbance to real-time processing, and (c) static

translation of the binary, where possible – static binary translation allows traditional

WCET techniques to be applied.

Fig. 8. Part of the binary code for the hypothetical ABS.

4 Conclusion

Monitoring safety conditions is important, because belief in safety goals frequently

depend upon them. We have presented the Safety Condition Monitoring System

(SCMS), a system designed to provide comprehensive, lifecycle monitoring of safety

conditions. A key feature of the monitoring system is its ability to sense software state

using dynamic binary translation without requiring any modifications to the subject

software.

References

[1] Patrick J. Graydon, John C. Knight and Elisabeth A. Strunk, Assurance Based Development of
Critical Systems, 2007 International Symposium on Dependable Systems and Networks (DSN),
Edinburgh, Scotland (June 2007)

[2] Patrick Graydon and John Knight, Process Synthesis in Assurance Based Development of Dependable
Systems. EDCC 2009: Eighth European Dependable Computing Conference Valencia, Spain (May
2009)

[3] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Benjamin Rodes, Matthew Hall, Clark Coleman, John
Knight and Jack Davidson, A Framework for Creating Binary Rewriting Tools, Tenth European
Dependable Computing Conference, Newcastle upon Tyne, UK (May 2014)

[4] Object Management Group, Business Process Model and Notation (BPMN) Version 2,
http://www.omg.org/spec/BPMN/2.0/PDF/

